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1 Introduction

»The "Electronic Vision(s) Group" at the "Kirchhoff-Institut fiir Physik" was
founded in 1995 (Heidelberg-University, 2008) . The group’s research includes
development, production and programming of artificial neural network chips.
Within this internship project an automated, spike based method for configuring
and calibrating synapse drivers on neuromorphic hardware is acquired.

The internship is supervised by Dr. Daniel Briiderle.

1.1 Motivation

Due to inevitable fluctuations in the production process, synaptic time constants
and efficiencies are subject to random variations.

Therefore the goal of this project is to develop a automated method for calibrat-
ing the system. The created software collects data and enters it into a database
system (not implemented in this project) for later use in experiments.

1.2 TUsed Resources And Tools

The following section describes the preexisting resources and tools used in this
project. For more details on a specific topic the mentioned reference literature
is suggested.

1.2.1 FACETS Neuromorphic Hardware System

The used Hardware System was developed within the FACETS research group,
where scientists of different domains, such as modeling experts, engineers and
experimentalists collaborate.

All performed experiments run on a "Spikey version 4" chip. It is placed on
a Nathan board, which is mounted on a backplane with other Nathan boards.
The backplane is connected to a host computer trough gigabit ethernet. The
following figure 1 illustrates the setup:
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Figure 1: The FACETS stage 1 hardware system. A scope can be used to display
psp (post synaptic potential), but it is avoided, as it is much faster to use spike
based methods. Further details on the system can be found in Briiderle, 2009.
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1.2.2 PyNN

,PYNN (pronounced ’pine’) is a simulator-independent language for building
neuronal network models* (Davison et al., 2008). It is used to setup experiments
and provides many adjustable parameters such as runtime, network size, neuron
model, external stimulation input and internal network connections as well as
synaptic weights.

The interface is implemented with the script language Python, so it is easy to
extend functionality for data evaluation by importing other Python modules,
e.g. NumPy for calculations and statistics.

1.2.3 NEST

NEST is a NEural Simulation Tool (Diesmann and Gewaltig, 2002) which, be-
sides the neuromorphic hardware, can be used as a back-end for the PyNN
interface. With this tool, experiments and routines can be tested before run-
ning them on actual hardware, though performance is not sufficient for large
networks.

The major advantage is, that reference experiments can be run on the simulator
for comparison with hardware results.

2 Results

In this chapter the methods, the experimental setups and their results are pre-
sented.

The general approach is to map biological parameters like the synaptic time
constant or the synapse weight to their corresponding hardware parameters,
preferably the values of DrviOutBase, DrviFallBase, the 4-bit synaptic weight
and, if necessary, the excitatory reversal potential. The values of DrviOutBase
an DrviFallBase are not set for each driver, they represent a factor, the individ-
ual, driver specific values are multiplied by. With this mapping, an automated
(and spike-based) calibration procedure can be implemented.

Reversal
Excitatory
Potential

Synaptic
Time Constant

Biological . Hardware
Input DrviOutBase Output
Parameters Parameters

Synaptic
Weight

DrviFallBase

Mapping =
AN

4-Bit Weight

Figure 2: Mapping of input to output parameters. Targeted biological parame-
ters are realized by transforming them into a corresponding hardware setup.
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2.1 Configuration And Calibration Methods

The calibration is a complex procedure with many software and hardware spe-
cific challenges. The following section will lead through it step by step, while
trying to make the underlying thoughts plausible.

The methods presented are spike based, that means that the only feedback
available for measurement and control are the output spike trains. Especially
the average output frequency will be used to control calibration. This is for
two reasons. First, experiments without analog measurement and display on a
scope are performed much faster, due to bandwidth limitations between host
and scope. Second, a spike based method can be easily transferred to other
neuromorphic hardware systems, where access to analog interfaces cannot be
guarantied.

2.1.1 Background Stimulation

Every synapse driver can be individually accessed and fed with different input
spike trains, so it is possible to use just one driver at a time. But since the
synapse drivers are influenced by each other, depending on spiking activity, it
would not be a realistic scenario to configure every single driver independently.
The neurons can not be calibrated yet, because the process requires already
calibrated synaptic drivers. So it is also crucial to average the output firing rate
over all available units.

In a first step, a background stimulation is configured. By matching the output
firing rate of the hardware with a software reference experiment, comprehensive
values for DrviOutBase and DrviFallBase are to found.

This process is applied on each half of available synapse drivers. In that way,
two separate background stimulation sources and their corresponding pairs of
values for DrviOutBase and DrviFallBase are obtained for further calibration
processes. Figure 3 shows the experimental setup of this step.
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Figure 3: configuring background stimulation. triangular gray: active synapse
drivers; circular gray: active synapses; quadratic blue: neurons
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For every value of DrviFallBase a value for DrviOutBase can be found, so that
it matches the output firing rate of the software simulation at a given input
firing rate.

The aim is to find a pair of parameters (or a sweet spot), which does not depend
on input frequency.

Heidelberg, WS 10/11 Electronic Vision(s) 4
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DrvioutBase

Sweet
Spot

-
>

DrvifallBase

Figure 4: Scan for a parameter independent pair of values. The located sweet
spot is the correct hardware configuration, representing the time constant set
in software or rather its biological value.

While scanning for the sweet spot, the 4-bit synapse weights are set on their
maximum value (15), to facilitate the highest possible resolution. This mea-
surement minimizes later error, caused by modifying synapse weights.

2.1.2 Single Driver Calibration

With the now available background input, the neurons are set in a high conduc-
tance state. In this state the output firing rate is very sensitive to variations of
the input firing rate. This effect is used for calibrating single synapse drivers
under realistic conditions.
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Figure 5: With background stimulation, the other half of the synapse driver

population can be calibrated by adapting the single driver specific values for
DrviOut and DrviFall to match software simulation.
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2.2 Experimental Setups and Results

In this section the series of experiments performed are described and the ac-
quired data presented.

2.2.1 Input Frequency Variation

The first experiment scans the parameter space of DrviOutBase and DrviFall-
Base for points of equal output firing rate at a given input firing rate.

The input spike trains are poisson distributed, so that the desired stimulation
frequency can be adjusted, but the single spikes within the spike train still are
uncorrelated. This is necessary for the experiment being based on a realistic
stimulation scenario.

For this experiment, a result being in accordance with the considerations made
in figure 4 is expected, because the effect of superposition of spikes on output
frequency, varies with input frequency. This is due to the specific ratio between
input frequency and synaptic time constant.

Despite these considerations, the experimental data shows an equally linear
dependency between DrviOutBase and DrviFallBase for the tested input fre-
quencies as can be seen in the plot in figure 6.
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1.2 T T T T T T T

0s | HN:’

"
% i % % +
g 06 % " + 4
= +
5 .
% +
04 Fov 1
§ +
% +
02 L ¥ Legend |
' @ 20Hz OFR  ——+—
@ 40Hz OFR  ——=+—
0 @ 60Hz OFR  —%—
0 0.2 0.4 0.6 0.8 1 1.2 1.4 186

iFallBase

Figure 6: Scan for a sweet spot in the parameter space of DrviOutBase and
DrviFallBase. The scan is performed for three different input firing rates be-
tween 7 Hz and 12 Hz to match the software output firing rate (OFR) of 20 Hz,
respectively 40 Hz, respectively 60 Hz at a given input firing rate. Other param-
eters are kept constant. Input firing rates above 14 Hz have to be avoided while
using 100 or more active synapse drivers, due to input bandwidth limitations.
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Interpretations of the plot should be made carefully as there are several possi-
bilities, explaining these results.

One explanation would be, that there are other effects influencing the results,
so that the actual effect of superposition remains still remains hidden.
Another possibility is, that the sweet spot lies outside of the scanned parameter
space, which can’t be extended any further than this.

In both cases the conclusion is, that other parameters have to be tested. Either
in order to provoke more impact by the effect of superposition or to translate
the position of the sweet spot into range.

2.2.2 Ratio Super Threshold To Sub Threshold

One parameter tested is the ratio of super threshold to sub threshold.

A
Voltage

V exc

Super
vV ih Threshold
Sub
Threshold
Vinh

Figure 7: The voltage ratio r arises out of r = % Biological realistic
m

values can be found with » > 1. As a hardware parameter the ratio defaults to
r = 0.8, due to a mechanism enforcing the excitatory potential. This is necessary
to support enough dynamic range for the PSP at a low supply voltage.

The scan as introduced in section 2.2.1 is repeated for the values r = {0.7,0.9, 1.2}.
Figure 8 shows that the ratio has an impact on the results, but only as an off-
set. The qualitatively behavior remains similar to the measurements with the
default value for the ratio.
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Figure &: Representative scan for sweet spot at different ratios

(r =0.9,r = 1,3). One can see the variation has no qualitative effect on the
curve gradient. A higher ratio effectively strengthens the excitatory synapses,
so it will result in a lower offset for DrviOutBase.

Taking account of the experimental results, adapting the ratio is not advisable
before actually defining constant values for DrviOutBase and DrviFallBase. It
should rather be used as a controller to set the optimal working point after
configuring the synapse drivers.

2.2.3 Spike Train Cascade

A way of trying to force a visible effect of superposition, is the concept of uniting
synapse driver into packages. Within one package every driver has similar input
as figure 9 illustrates.

By varying the parameter AT the effective input firing rate is controlled. An
interval of interest is AT as a factor of the biological synapse time constant 7.
For 0 < AT < 7 there is strong superposition, while for A > 7 the superposition
is reduced to the same level as in the initial experiment in section 2.2.1.
Similar an increase of drivers per package, the number of correlated inputs
results in a strong superposition of input, while decreasing the number to one
driver per package leads again back to the initial experiment.
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Figure 9: Cascading spike trains. For every package of synapse drivers just
one poisson spike train is generated. This spike trains serves as input for every
driver within one package, but with different offsets. The first driver of a package
receives the original spike train, the next one receives the same spike train, but
with an offset of an adjustable parameter AT. The next driver input has an
offset of 2 - AT and so on.
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Figure 10: All experiments are setup with 100 synapse drivers.
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Figure 11: Though one could think the points for different AT match for low
values of DrviFallBase, this is not the case, because below 0.2 for DrviFallBase,
DrviOutBase already takes its minimum value and the target firing rate is not
reached.

This method seems to be suited to find a corresponding DrviOutBase DrviFall-
Base setup for the tested synapse time constant. Though a possible sweet spot
is definitely not found, conversion can be observed.

In order to translate the assumed sweet spot into the available parameter range
the scan is repeated for other values of 7 than 5 ms. But the resulting ratio of
input to output firing rate in software simulation is not reproducible by hard-
ware, due to input bandwidth limitations, output bandwidth limitations and
high deviation at low firing rates.
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Figure 12: Here the same problem as in figure 11 occurs, below values of 0.2
for DrviFallBase, DrviOutBase already takes its minimum value and the target
firing rate is not reached.

3 Discussion

In this section a brief summary points out the most important findings of the
project and the vista considers what to challenge next.

3.1 Summary

The initial goal, to collect configuration and calibration data is not reached
within this internship, due to problems in configuration and especially in defin-
ing a correct setup of the hardware parameters of DrviOutBase and DrviFall
Base for a corresponding synaptic time constant.

Nevertheless serviceable data is acquired and mutual experience is gained. In
this process the possibilities, available ranges of various parameters and their
effect on the synapse drivers are revealed.

3.2 Outlook

The method of cascade spiking, as explained in section 2.2.3, seems to point the
way for a solution to configure and finally calibrate the synapse drivers.

Before further testing is performed, current experiments have to be confirmed
by scope analyses. Also the source code for the experimental setup should be
straightened to be more efficient in order to run more experiments in less time
and provide easy access on the top interface level to important variables. It is
possible, that the present experiment software contains bugs, which eventually
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can be detected this way.

Next next step is to use the configured background stimulation for single synapse
driver calibration as proposed in section 2.1.2.

Also the current background stimulation has to be tested for sufficiency. In this
case sufficient means, that the output firing rate is stable and sensitive enough
to detect additional input from a single driver in order to calibrate it.

The resulting calibration quality has to be analyzed and compared to the un-
calibrated system.

With these tasks closed, the system is ready for further calibration.

Appendix

Source Code

The following source code files are written to perform the described experiments.
It is build in a modular and object oriented way so that it should be easy to
replace single modules or expand functionality.

Listing 1: background.py

# script to test wvarious background stimulations with
different

# iout base and ifall base parameters.

# compare with software simulation.

# by loannis Kokkinos, ioannis. kokkinos@kip.uni—
heidelberg . de

# 12.01.2011

import pyNN. hardware.stagel as pynnHW
import pyNN.nest as pynnSW

import pylab
import numpy

import poisson gen
import myrasterplot
import plot

import firerate
import time

# Helper class to store neuron parameters
class NeuronParams:
def _ init  (self,

v_reset = —80.0,
e rev. I = -75.0,
v_rest = —75.0,
v_thresh = —53.0,
g leak = 20.0,

tau_syn E= 10.,
tau syn I= 10.):

Heidelberg, WS 10/11 Electronic Vision(s) 12
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self.dic = {
'v_reset’ : v_reset, # mV
e rev_ 1’ e _rev T, # mV
v_rest’ : v_rest, # mV
v_thresh’ : v_thresh, #mV
g leak’ ;g leak, # nS
tau_syn E’ : tau _syn E, # ms
"tau_syn_ I’ @ tau_syn I # ms

}

# Helper class to store stimulation parameters
class StimParameters:
def  init  (self,

useHardware , # Bool
ioutBase , #
Float > 0
ifallBase |, #
Float > 0
neuronParams , #
NeuronParams
firing rate exc, # 25 >
Float > 0
firing rate inh, # 25 >
Float > 0
numExcInputs = 20, # Int
> 0 Exc/Inh 4
numInhInputs = —1, # Int
> 0 Exzc/Inh ™4
spikesRecordPath = ’'spikes.dat’, #
String
statisticsRecordFolder = ’data/’, #
String
numRuns = 1, # Int
> 0
numNeurons = 2, # Int
> 1
offset = 0, # Int
>= 0
w_excSW = 1.e—16, #
Float
w_inhSW = —1, #
Float
w_exc = 1.0, #
Float
w_inh = —1, #
Float
expDuration = 10000, # Int
in ms
usePlot = False, # Bool
ratioSupthreshSubthresh = 0.8, #
Heidelberg, WS 10/11 Electronic Vision(s) 13
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deltaTfacto

factor is

r =1,

numCorrlnputs = 1

number of inputs in a correlated

input package

self .useHardware =

useHardware
self .numExcInputs = numExcInputs
if numInhInputs =— —1:

self .numInhInput
nicht mehr i

else:
self . numInhInput

self .spikesRecordPath = spikesRecordPath

s = numExcInputs/1
m Verhealtnis 1/4

s = numlInhInputs

self .statisticsRecordFolder =
statisticsRecordFolder

self .numRuns =
if useHardware:

self .numNeurons
else:

numRuns

= numNeurons

self .numNeurons = 2

self.offset =
if useHardware:
if w_inh < 0:
self . w_exc
self .w_inh
else:
self .w_exc
self.w_inh
else:
if w_ inhSW < 0:
self . w_exc
self .w_inh
else:
self.w_exc
self.w_inh
self .expDuration =
self .ioutBase =
self.ifallBase =
self .neuronParams =
self . firing rate exc
self . firing rate inh
CHANGE BACK TO fi
self . usePlot =

offset

W_exc
= w_excx0.25

W_exc
w__inh

= w_excSW
= w_excSW=x0.25

= w_excSW

= w_inhSW
expDuration
ioutBase
ifallBase
neuronParams. dic
= firing rate exc
= firing rate inh
ring _rate_inh
False

self .ratioSupthreshSubthresh =
ratioSupthreshSubthresh

self .numCorrInputs =

self.deltaT = neuronParams. dic["tau syn E"|x

deltaTfactor

numCorrlnputs

multiplied with tau syn FE

11l
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104 # Control and configure the experiment
105 class Stimulation:

106 def  init  (self,

107 stimParameters) :

108 self .stimParameters = stimParameters

109 self.neuronParams = stimParameters.

neuronParams

110 self .ratioSupthreshSubthresh = stimParameters.

ratioSupthreshSubthresh

111 self .poisson rng exc = numpy.random

112 self.poisson _rng exc.seed (int (time.time ()*1000))

113 self.poisson rng inh = numpy.random

114

115 # setup the experiment with given parameters,

116 # so that it is runnable.

117 # the setup can be changed,

118 # all information is stored in class attributes.

119 def setup(self, usescope = False, workstationName="

station412"):

120 if self.stimParameters.useHardware:

121 pynnHW . setup (timestep=0.1,

122 debug=False ,

123 useScope=usescope ,

124 mappingOffset=self .

stimParameters. offset ,

125 calibOutputPins=False ,

126 calibTauMem=False ,

127 calibSynDrivers=False ,

128 calibVthresh=False ,

129 loglevel =0,

130 logfile="logfile",

131 ratioSuperthreshSubthresh = self

.ratioSupthreshSubthresh ,
132 workStationName=workstationName)
133 self .neuron = pynnHW. create (pynnHW.
IF facets hardwarel,
134 self.neuronParams
135 n= self.
stimParameters
.numNeurons)

136 # create empty hardware simulation spike

sources

137 self . i _exc = pymnHW. create (pynnHW.

SpikeSourceArray ,

138 n=self .
stimParameters.
numExcInputs)

139 self .i_inh = pynmmnHW. create (pynnHW.

SpikeSourceArray ,

Heidelberg, WS 10/11 Electronic Vision(s) 15
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140 n=self.
stimParameters.
numInhInputs)

141 else:

142 pynnSW . setup (timestep=0.1)

143 self .neuron = pynnSW. create (pynnSW.

IF facets hardwarel
144 self .neuronParams
145 n= self.
stimParameters
.numNeurons)

146 # create empty software simulation spike

sources

147 self.i exc = pynnSW. create (pynnSW.

SpikeSourceArray ,

148 n=self.
stimParameters.
numExcInputs)

149 self.i inh = pynnSW. create (pynnSW.

SpikeSourceArray ,

150 n=self.
stimParameters.
numInhInputs)

151 # fill up with poisson spike trains

152 # the inputs are divided into packages,

153 # in which every spiketrain is the exact copy of

the previous spiketrain ,

154 # but with a delay of deltaT

155 count = 0

156 offset = self.stimParameters.deltaT

157 for e in self.i exc:

158 if count%self.stimParameters.numCorrInputs =

0:
159 # print "package nr " + str(count/self.
stimParameters.numCorrinputs + 1)
160 newSpikeTrain = poisson gen.generate (
start= 0.0,

161 duration= self.
stimParameters.
expDuration ,

162 freq= self.
stimParameters.
firing rate exc,

163 rng= self.
poisson_rng exc
)

164 else:

165 newSpikeTrain = numpy.array (newSpikeTrain

)

Heidelberg, WS 10/11 Electronic Vision(s) 16



Toannis Kokkinos Internship Project March 2, 2011

166 newSpikeTrain 4+= offset
167 for ii in range(len (newSpikeTrain)):
168 if newSpikeTrain[ii] > self.
stimParameters.expDuration:
169 newSpikeTrain|[ii]| —= self.
stimParameters.expDuration
170 newSpikeTrain . sort ()
171 # print newSpikeTrain[—1]
172 e.set parameters(spike times= newSpikeTrain)
173 count += 1
174 for i in self.i inh:
175 newSpikeTrain = poisson gen.generate(start=
0.0,
176 duration= self.
stimParameters
.expDuration ,
177 freq= self.
stimParameters
firing rate inh
178 rng= self.
poisson_rng inh
)
179 i.set parameters(spike times= newSpikeTrain)
180 if self.stimParameters.useHardware:
181 # adjust drvifallBase
182 pynnHW . hardware .hwa. drvifall base|’exc’| =
self.stimParameters.ifallBase
183 # adjust drvioutFall
184 pynnHW . hardware . hwa. drviout _base [ ’exc’] =
self .stimParameters.ioutBase
185 # adjust drvifallBase
186 pymmiHW . hardware .hwa. drvifall base|’inh’| =
self.stimParameters.ifallBase
187 # adjust drvioutFall
188 pymHW . hardware .hwa. drviout base|’inh’| =
self .stimParameters.ioutBase
189 pynnHW. connect (self .i_exc,
190 self .neuron ,
191 weight= self.stimParameters.
w__exc,
192 synapse type=’excitatory’)
193 pynnHW. connect (self .i_inh,
194 self .neuron ,
195 weight= self.stimParameters.
w_inh,
196 synapse type=’inhibitory )
197 pymnHW. record (self .neuron, self.

stimParameters.spikesRecordPath)
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else:
pynnSW. connect (self.i exc,
self .neuron,
weight= self.stimParameters.
W_exc,
synapse type=’excitatory ’)
pynnSW. connect (self.i inh,
self .neuron ,
weight= self.stimParameters.
w_inh,
synapse type=’inhibitory )
pynnSW.record (self.neuron, self.
stimParameters.spikesRecordPath)
if self.stimParameters.usePlot:
self .rplot = myrasterplot.Rasterplot (self.
stimParameters.expDuration ,
self.
neuron

)

def resetFiringRates(self):
self . firingRates = []

def run(self):
for i in range(self.stimParameters.numRuns):
if self.stimParameters.useHardware:
pymnHW . run (self . stimParameters.
expDuration, ratioSuperthreshSubthresh
= self.ratioSupthreshSubthresh)
pynnHW . end ()
else:
pynnSW.run (self.stimParameters.
expDuration)
pynnSW. end ()
self.firingRates.append(firerate.firerate (

self.stimParameters.expDuration ,
self

stimParameters

numNeurons

)

self
stimParameters

spikesRecordPath

)
)
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#print self. firingRates

if self.st

imParameters. usePlot:

plot.plot(self.stimParameters.
spikesRecordPath ,

self .rplot)

def statistics(self):

self.firingRates = numpy.array(self.firingRates)

fr = firerate.averageFirerate(self.firingRates)

dr = firerate.sdeviationFirerate(self.firingRates
ufr)

tr = firerate.totalAverage(fr)

td = firerate.
firerate.print

totalDeviation (dr)
ToFile(self.stimParameters.

statisticsRecordFolder

+ ’_outBase.’

+ str(self.stimParameters.
ioutBase)

+ ’_fallBase_’

+ str(self.stimParameters.
ifallBase)

+ 7’.dat’,
fr, dr)

self .tr = tr*1000
self.td = td*1000
return self.tr

def printStatistics(self):
print "Statistics _OFR:"
print repr(self.tr) + '_7 + ’4—_7 + repr(self.td)

Listing 2: iteration.py

different
iout base and ifall

It is build in a mo
by Ioannis Kokkinos,

heidelberg . de
26.01.2011

Script to test warious background stimulations with

base parameters.

Compare with software simulation.

dular way,

so that any component can be replaced easily.

toannis. kokkinos@kip . uni—

script module to find the best fitting wvalue

for given parameters

returns 1 if po
returns 0 if 0

#
# get the sign of a number
#
#

sitive
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# returns —1 if negative
def sign (number):

if number < 0: return —1

if number > 0: return 1

return 0
# checks if a number is NOT in an intervall
def outOfBound (number, mi, ma):

return (mi > number or ma < number)

class FitValue:
def  init  (self,
target , #
minValue , #
variable
maxValue , #
varitable
tolerance = 3.,#
in percent
mlterations=10 #

the wvalue to target
minimal value of the

mazimal value of the
difference to target

maxr iterations

# last Result =% # the last result of the
experiment
):
self.target = target
self.variable = (minValue + maxValue/2.)
self.tolerance = tolerance
self .mi = minValue
self .ma = maxValue
self .iterations = 0
self . mIterations = mlterations

RN

NOTE: This last attribute
created

# by the following function.

self.lastResult = lastResult

1s automatically

# getNewVariable(result)
iiaia

# returns the new value of the wvariable

# returns —1 if there
# returns 0 if the target is
maxr itterations

is no better result to expect

out of range or reached

def getNewVariable(self ,result):
self .iterations = self.iterations +1

targetAcquired = abs(result—self.target)/self.

target < self.tolerance/100.
#  Oh—Happy—Day—Scenario
if targetAcquired:

self . lastResult = result
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print
print "target_acquired"
print
return —1
if self.iterations > self.mlterations:
print "reached_max_iterations"
return 0
# check if there has already been a previous result
#  if hasattr(self, lastResult ’):
# check if (result—target) has same sign as (
lastResult—target)
# if not, we have to turn around and decrease
the stepwidth
# if mot(sign(result—self.target)== sign(self.
lastResult—self.target)):
# self.stepwidth = self.stepwidth /2.
# print "decreasing stepwidth to " + str(
self.stepwidth)
# the result is smaller than the target
if result < self.target:
self .mi = self.variable
self.variable = (self.mi + self.ma) /2.
# the result is bigger than the target
else:
self .ma = self.variable
self.variable = (self.mi + self.ma) /2.
# self.lastResult = result
print
print "Step_#" + str(self.iterations)
print "New_Variable_=_" + str(self.variable)
return self.variable
# getStepwidth ()
idaia
# Returns the current stepwidth of the iteration.
# The return value can by interpreted as a mazx error
# of the current result.
def getStepwidth(self):
return self.ma — self.mi
Listing 3: firerate.py
# helper functions to get the firerate of meurons
# by lToannis Kokkinos, ioannis. kokkinos@kip.uni—
heidelberg . de
# 08.12.10
# review 22.12.10
# by lToannis Kokkinos, ioannis.kokkinos@kip.uni—
heidelberg . de
# review 11.01.11
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# by lToannis Kokkinos, ioannis. kokkinos@kip.uni—
heidelberg . de

# review 11.01.11
# changed from decimal to pylab
# import decimal
import pylab as p
import numpy as n

# calculate firerate for every mneuron

# review 11.01.11

# load with pylabd

def firerate (expDuration ,numNeuron, dataPath):

try:

spikelist = p.loadtxt (dataPath)
except:

return n.array ([0.]*numNeuron)
firelist = []

#print spikelist
for i in range(1,numNeuron+1):
spikes = spikelist[spikelist[:,1]==1]
firelist .append(float (len(spikes))/expDuration)
#print firelist
return n.array(firelist)

# review 11.01.11
# adapted to numpy array
def averageFirerate(firingRates):
numRuns = len (firingRates)
#print firingRates
#print type(firingRates)
fireList = n.mean(firingRates , axis=0)
#print fireList
return fireList

# review 11.01.11

# adapted to numpy array

def sdeviationFirerate (firingRates, avFiringRates):
devList = n.std(firingRates ,axis=0)
#print devList
return devList

def printStatistics(avFiringRates, devList):
print 'Nr_Average_Firerate______ Standard_Deviation
for i in range(len(avFiringRates)):
print repr(i).rjust(2), repr(avFiringRates[i]).
ljust (35), repr(devList[i]).1ljust (35)

)

def printToFile(fileName, firingRates, devList):
f = open(fileName, ’'w’)
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for i in range(len(firingRates)):
print >>f, repr(i).rjust(2), repr(firingRates[i])
.1just (20), repr(devList[i]).1ljust (22)
f.close ()

# 22.12.2010 total average firingrate calculation
def totalAverage(firerate):

tr = sum(firerate)/len(firerate)

return tr

# 17.01.2012 total deviation of firing rate
def totalDeviation(deviation):
s =0.0
for i in deviation:
s= s+ixi
return (s/len(deviation))x*x*0.5

Listing 4: outFallexperiment.py

# Class to find the wvalue of ioutBase with given
ifallBase ,

# to match OFR with software simulation

# by lToannis Kokkinos, ioannis. kokkinos@kip.uni—
heidelberg . de

# 26.01.2011

import background as ba
import iteration as it

class Experiment :
def  init  (self,

ifallBase , # constant

inputs # number of exc inputs
(inh depending)

numRuns, #

numNeurons = 192 ,#

expDuration=6000,# CHANGE BACK TO 6000
usePlot = False, #
ratioSupthreshSubthres = 0.8,
deltaTfactor = 1.,
numCorrlnputs = 1
):

self.ifallBase = ifallBase

self .inputs = inputs

self .numRuns = numRuns
self .numNeurons = numNeurons
self .expDuration= expDuration
self . usePlot = usePlot

self.ratioSupthreshSubthresh =
ratioSupthreshSubthres
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# self.
the SW

# self.
the SW
self .

self.

self.

self .

self.

self .

self.

refOFR
ref exp
reflFR
ref exp
w_excSW
mi

ma
tolerance
mlt

deltaTfactor
numCorrInputs = numCorrInputs

# will be created by

# will be created by

= deltaTfactor

# Start a software reference experiment with NEST

# the resulting

desired

# OFR (output firing rate)

# return a

list with

def refExp(self , tfr):

ifr, ofr and iterations

input firing rate should produce the

neuPar = ba.NeuronParams ()
fv = it .FitValue (tfr , # target
1., # min
25., # max
tolerance = 1., # tolerance
mlterations = 40 # max
tterations
)
result =1
var = fv.variable
while (var > 0):
self .refl[FR = var
stiPar = ba.StimParameters(False ,
1.,
1.,
neuPar ,
var ,
var ,
numExcInputs = self.
inputs ,
numRuns = 1,
numNeurons = 2,

w_excSW = self .w_excSW

)
expDuration =

self.
expDuration ,

usePlot = self.usePlot

deltaTfactor = self.
deltaTfactor ,

numCorrInputs = self.
numCorrInputs
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)

stim = ba.Stimulation (stiPar)
stim . resetFiringRates ()
if fv.iterations < 4:
for i in range(3):
stim . setup ()
stim . run ()
else:
for i in range(self.numRuns):
stim . setup ()
stim . run ()
result = stim.statistics ()
stim. printStatistics ()
var = fv.getNewVariable(result)
self .refOFR = result
return [self.refIFR, self.refOFR,fv.iterations]

# Start a software reference experiment with NEST
# the resulting output firing rate should be
# reproduceable by hardware
# return a list with ifr, ofr and iterations
def refDeltaT (self , deltaT):
self.deltaTfactor = deltaT

neuPar = ba.NeuronParams ()

result =1

stiPar = ba.StimParameters(False,
1.,
1.,
neuPar ,

self .refl[FR ,

self .refl[FR ,

numExcInputs = self.
inputs ,

numRuns = 1,

numNeurons = 2,

w_excSW = self .w_excSW

expDuration = self.
expDuration ,

usePlot = self.usePlot

deltaTfactor = self.
deltaTfactor ,

numCorrlnputs = self.
numCorrlnputs

)

stim = ba.Stimulation (stiPar)

stim . resetFiringRates ()

for i in range(self.numRuns):
stim . setup ()
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stim .run ()
result = stim.statistics ()
stim. printStatistics ()
self .refOFR = result
return result

# Start a experiment with hardware
# the resulting ioutBase should produce the TFR (target
firing rate)
def experiment(self, refOFR):

neuPar = ba.NeuronParams ()
fv = it .FitValue (refOFR,, #
target
self .mi, #
min
self .ma, #
max
tolerance = self.tolerance, #
tolerance
mlterations = self.mlt #
max iterations
)
result = 1.
std = 0.
var = fv.variable
while(var > 0):
self.ioutBase = var
stiPar = ba.StimParameters(True,
var ,
self.ifallBase ,
neuPar ,
self .reflFR ,
self .refl[FR ,
numExcInputs = self.
inputs ,
numRuns = 1,
numNeurons = self .
numNeurons,
expDuration = self.
expDuration ,
usePlot = self.usePlot
deltaTfactor = self.
deltaTfactor ,
numCorrIlnputs = self.
numCorrInputs
)
stim = ba.Stimulation (stiPar)
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stim . resetFiringRates ()
if fv.iterations < 3:
for i in range(3):
stim . setup ()
stim . run ()
else:
for i in range(self.numRuns):
stim . setup ()
stim . run ()
result = stim.statistics ()
std = stim.td
err = fv.getStepwidth ()
var = fv.getNewVariable(result)
stim. printStatistics ()
return [result , std, fv.iterations , err]

def getloutBase(self):
return self.ioutBase
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