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1 Introduction

Due to insufficient experimental methods to quantify information pro-
cessing dynamics in biological neural networks, neuro-scientific modelling is
an important subject area in nowadays’ biophysics. A growing number of
computation tools appeared in order to flexibly study neural network mod-
els, to minimize experimential cost and time, and, in addition to that, to
produce reusability, though offering the user to obtain precise simulations
as well as publishable figures.

Chapter 2 introduces the main facts about neuro-scientific modelling
and draws a comparison between the two unlike techniques to imitate neu-
ral networks: In section 2.2, software simulation stratergies are described
and two of the most known simulation environments are presented. Section
2.3 depicts facts about the FACETS1 neuromorphic hardware developed by
the Electronic Vision(s) Group of the Kirchhoff-Institut for Physics at the
University of Heidelberg.

Chapter 3 starts with an overview of methods to facilitate interoperabil-
ity of different simulators. One goal of these approaches is a standardisation
of today’s available range of simulation environments and neuromorphic
hardware emulations in order to reduce their physical handicaps. There-
fore, as a project result, a novel interaction concept for a software-hardware
co-simulation is presented.

1Fast Analog Computing with Emergent Transient States
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2 Neuro-Scientific Modelling

In this chapter, firstly, nowadays’ utilized spiking neural models and their
mathematical basics are described. Afterwards, the two disparate methods
to replicate and quantify neural networks are presented: software simulators
and hardware emulators. For each of them, advantages and disadvantages
are revealed. To conclude the chapter, a comparison is drawn between these
two techniques.

2.1 Spiking Neural Models

By including the concept of temporal development of the membrane po-
tential, in addition to the neuronal and the synaptic states, spiking neural
network models become an approximately realistic representation of neuro-
biological findings [2].

This section introduces the mostly used spiking neural models and their
underlying differential equations.

The following information is mainly looked up from [10] and [3].

2.1.1 Leaky Integrate-and-Fire Model (LIF)

The leaky integrate-and-fire model (LIF) is a simple, i.e. analytically
solvable, neural model. It is made up of a parallel circuit consisting of a
capacitor C and a resistor R. The membrane potential V (t) is governed by
the following differential equation:

τm
dV

dt
= −V (t) + R · I(t) . (1)

Here, τm = RC is the membrane time constant of the neuron and I(t)
the driving current of this basic circuit. The form of an action potential
is not described explicitly [10]. Spikes are events which are represented by
a firing time tfire. If the membrane potential V (t) reaches a critical value
V (t) > Vth = V (tfire), a spike is emitted and, immediately, the membrane
potential is reset to the membrane reset potential Vreset. Vth is called the
threshold voltage.

The chip model, presented in section 2.3.1, is determined by the LIF
model. The emulated membrane potential is regulated by the following
differential equation:

−Cm
dV

dt
= gl(V − El) +

∑

j

pj(t)gj(t)(V − Ex) +
∑

k

pk(t)gk(t)(V − Ei)

(2)
The constant Cm represents the total membrane capacitance. gl is the

leakage conductance and depends on the time constant τm = Cm

gl

of the expo-
nential convergence of the membrane potential. The first term on the right-
hand side models the development of the membrane potential, if no transient
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conductances towards other reversal potentials are active. Thus, El is called
leakage reversal potential. The transient conductances imposed by synaptic
activity have different reversal potentials, Ex for excitatory synapses and
Ei for inhibitory ones. The index j in the first sum runs over all excita-
tory synapses, while the index k in the second sum conceals the inhibitory
synapses. An individual synapse s generates a conductance course (CC),
which is determined by the product ps(t) · gs(t), where ps(t) stands for the
synaptic open probability and gs(t) is the product of the synaptic weight ωs(t)
and the maximum conductance gmax

s (t):

gj,k(t) = ωj,k(t) · g
max
j,k (t) (3)

2.1.2 Adaptive Exponential Integrate-and-Fire Model (aEIF)

The temporal development of the membrane potential V (t) in the so called
adaptive exponential integrate-and-fire model (with conductance-based synapses)
is governed by the following differential equation:

−Cm

dV

dt
= gl(V − El) − gl∆thexp [

V − Vth

∆th

] + gx(t)(V − Ex)

+ gi(t)(V − Ei) + ω(t)

(4)

The variables Cm, gl, El, Ex and Ei are defined as in 2.1.1. gx(t) and
gi(t) represent the total excitatory and inhibitory conductances.

Compared to equation 2, a new mechanism is introduced to the I&F
neuron by the exponential term on the right hand side. The threshold po-
tential Vth stands for the critical value, above which the membrane potential
fast develops towards infinity. The rapidity is set by the slope factor ∆th.
If the membrane potential V (t) reaches a critical value Vspike > Vth, a spike
is emitted and the membrane potential is reset to Vreset by a very strong
conductance.

Another modification of the basic COBA I&F model is the adaptation
current ω(t), which is determined by

−τω
dω

dt
= ω(t) − a(V − El) . (5)

Every time a spike is emitted, ω changes its value instantaneously. τω

represents the time constant and a the efficacy of the so called sub-threshold
adaptation mechanism [1][3].

2.1.3 Hodgkin & Huxley Model (HH)

The HH model is a detailed neural simulation model, which is not based
on integrate-and-fire mechanisms, but on the actual ionic current flows in
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the cell membrane. These flows are controled by an, in this case simplified,
differantial equation:

−Cm

dV

dt
= −I(t) +

∑

k

Ik(t) (6)

where Vm is the membrane potential. The constant Cm represents the
total membrane capacitance. On the right hand side, I(t) is the whole applied
current, consisting of the individual ionic currents, and so called leakage
currents. Ik(t) denote the individual ionic currents, which have their own
reversal potentials. These currents provide for a realistic empirically-based
model.

Here, the neuron fires, if either the condition
dVm

dt
≥ Θ and/or Vm ≥ Θ

is obtained, whereas Θ is a configurable constant.
For detailed information the reader is referred to [2] or [9].

2.1.4 Spike Response Model (SRM)

The Spike Response Model (SRM) is a generalization of the leaky I&F
model. Characteristically for SRMs, the participating parameters en masse
depend on the time that has past since the last output spike. Another
difference to intergrate-and-fire models is the fact, that, in order to calculate
the membrane potential at time t, the SRM has to solve integrals over the
past time [10].

2.2 Software Simulators

This section firstly summarizes facts about the actual simulation process
and deals with different simulation strategies. Afterwards, two of the most
famous freely-available simulation-environments are presented. In conclu-
sion, the main advantages and disadvantages of using software simulators
are outlined.

The following information is mainly extracted from [2].

2.2.1 Simulation Process

In computer simulations, neurons are usually represented by a hybrid
system formalism. Thus, the neural membrane potential dynamics and the
synapse activity is handled by solving differential equations of the form:

d
−→
X

dt
= f(

−→
X ) (7)

There are several numerical solution methods for differential equations,
such as the midpoint method, the Forward-Euler, the Backward-Euler, the
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Exponential-Eulerand the Runge-Kutta solution method. Each of the soft-
ware simulators differ in their kind of applied solution methods, considering
the required time resolution, on the one hand, and the precision of the re-
searched issue, on the other hand.

In equation 7, the variable
−→
X generally stands for the state of the neu-

ron, which is varied upon incoming spikes from connected synapses. While
synapses are only updated at every incoming spike, the state of the neuron
has to be updated at each time step. Additionally, it has to be reset to a
determined value, if some particular threshold conditions are satisfied, e.g.
the membrane potential Vm ≥ Θ in I&F models. This reset can be integrated
into the hybrid system formalism by considering that outgoing spikes act on
−→
X through an additional (virtual) synapse. Thus, if no transmission delays
are included into the model, spike times need not be stored, whereby unnec-
essary computational traffics are avoided.

For fast synaptic simulations often linearities are used, where all synaptic
variables sharing the same linear dynamics can be reduced to a single one.
This reduction also applies to synapses with higher-dimensional dynamics,
as long as it is linear and the spike-triggered changes do not depend on the
state of the synapse.

2.2.2 Simulation Strategies

In this context, different types of simulation strategies and algorithms
that are currently implemented are described. To these belong synchronous/
clock-driven algorithms and asynchronous/event-driven algorithms.

Synchronous or Clock-Driven Algorithms In synchronous or clock-
driven algorithms, the state variables of all neurons and/or synapses are
updated simultaneously at every tick of a clock X(t) → X(t+dt) by solving
linear or non-linear differential equations. After updating all variables, the
threshold condition is checked for every neuron, and, if the neuron satisfies
this model-dependent condition, a spike is emitted and the membrane po-
tential is reset. Figure 1 in [2] shows a basic clock-driven algorithm.

The computational cost Ctot per 1s of biological time for these processes
consists of the state updating and the propagation of spikes:

Ctot(1s) = (cU ×
N

dt
+ cP × F × N × p)× 1s (8)

Here cU and cP are the costs for one update or one spike propagation
respectively. N stands for the number of neurons, dt for the duration of the
time bin, F represents the average target rate and p the target neurons,
both refering to one neuron. Considering transmission delays, which are
representing real axonal delays, as far as they store future synaptic evens in
a circular array, additional costs
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Cdel(1s) = cD × F × N × p × 1s (9)

appear, where cD determines the cost of one store and retrieve operation
in the circular array.

External noise can be introduced in clock-driven algorithms by either
adding random external spikes or simulating a stochastic process. Simulating
random external spike trains lets each tick of the clock trigger a random
number of synaptic updates, while accounting for additional computational
cost proportional to Fext · N .

Generally, a clock-driven algorithm is useful where the time step-based
evaluation of each element of the simulation progress is cheaper, according
to computational cost, than event-based communication.

Asynchronous or Event-Driven Algorithms In asynchronous al-
gorithms, the state of a neuron and a synapse is only updated, if an event
arrives, which can be spikes coming from neurons in the network, or exter-
nal spikes. Such algorithms can be distiguished to such with instantaneous
synaptic interactions and to such with non-instantaneous synaptic interac-
tions.

In instantaneous synaptic interactions, spikes can be produced by a neu-
ron only at times of incoming spikes, while timed events are stored in a
priority queue. An iteration consists of: (see figure 2 in [2])

1. extracting the next event,

2. updating the state of the corresponding neuron,

3. checking if the neuron satisfies the threshold condition, and, if it does,
insert the events in the queue.

As transmission delay algorithm, the FIFO2 algorithm is used.
All in all, asynchronous algorithms with instantaneous synapses interac-

tions are fast to implement.
In non-instantaneous synaptic interactions, spike times do not necessar-

ily occur at times of incoming spikes, so that the algorithm implementation
becomes more complex, illustrated in figure 3 in [2]. The following iteration
of the algorithm guerantees, that the simulation is correct:

1. extracting the spike with the lowest timing from a provisory queue,
which maintains a sorted list of the future spike timings of all neurons,

2. updating the state of the corresponding neurons and recalculate its
future spike timing,

2First In, First Out
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3. update the state of its target neurons,

4. recalculate the future spike timings of the target neurons

Considering transmission delays, another non-modifiable priority queue stores
future synaptic events with their timings, which makes the whole system
more complicate and difficult to implement.

The main difficulty in implementing such a priority queue is the fact,
that scheduled outgoing spikes can be canceled, postponed or advanced by
future incoming spikes, if the transmission delays exceed a determined value
τmin. Consequently, all outgoing spikes scheduled in the interval [t, t + τmin]
are certified, which speeds up the simulation.

Taking everything into account, the total computational cost comes up
to:

Ctot(1s) = (cU + cS + cQ) × F × N × p × 1s (10)

with cU as the cost of one update of the state variables, cS as the cost of
calculating the time of the next spike, and cQ as the average cost of inser-
tions and extractions in the priority queue(s). Obviously, the the simulation
time is linear in the number of synapses, which is optional.

Like in synchronous algorithms, external noise can be introduced by ei-
ther adding random external spikes or simulating a stochastic process. In
this case, simulating random external spikes means adding a queue with
external events. Since event-driven algorithms assume that the state of any
neuron can be exactly calculated at every time, only simple pulse-coupled
integrate-and-fire models or basic SRMs can come into question for a usage
in an event-driven fashion.

Generally, an event-driven algorithm is useful where the event-based
communication of the simulation progress is cheaper, according to compu-
tational cost, than time step-based evaluation of each element.

2.2.3 Overview of Simulation Environments

Reviewing software simulators, there is a manifold amount of publically-
available and non-commercial simulation environments. In the following sec-
tions, the two simulators NEURON and NEST, which were used during this
project, are discussed.

NEURON NEURON is a simulation tool for creating and using ex-
perimentally based biological models of neurons and neural systems. It is
especially suitable for COBA models with complex anatomy, including ex-
tracellular potential near the membrane and several biophysical properties,
such as different ionic channel types. The network size may reach from a
part of a membrane to large networks of 105 neurons. A key attribute of
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neurons simulated with NEURON is the possiblity to spatially split up the
cellular compartments, providing for a realistic representation of biological
models.

One of the advantages of NEURON is the conceptual control, which is
facilitated by features, like the native syntax of the hoc language, an exten-
sive GUI, e.g. containing cell and network builders, and other programming
interfaces, like Python or NMODL. Remarkably, once a neuron or a network
has been created with the help of the GUI, it can be converted into a hoc file
in order to reuse the model in larger networks. Furthermore, NEURON has
a reputation for its computational robustness, accuracy, and efficiency. The
simulation environment maintains both clock-driven and even-driven algo-
rithms, while using the Backward-Euler or the Crank-Nicolson integration
technique. NEURON has a range of operating systems it is working on. E.g.
the simulator has several distributions for Windows, Mac and Linux operat-
ing systems. Besides, NEURON supports several kinds of parallel processing,
e.g. distributed cell compartments or distributed networks.

A failed point is the online documentation, which leaves much to be de-
sired. The examples are, in some places, too unprecise for newcoming neural
network developers, thus, it is e.g. severe to create simple networks with
point neurons, including synapse connectivity weights and probabilities, or
an external random spike generator.

NEST NEST (NEural Simulation Tool) is another simulation environ-
ment primarily designed to simulate large neural networks up to 105 neurons
with realistic connectivity and to guerantee strict reproducibility. Typical
neuron models in NEST have one or a small number of compartments. As
well, the simulator supports heterogenity in neuron and synapse types.

Regarding networks of real connectivity, the memory consumption de-
pends on the number of synapses. As a result, NEST’s focus is the efficient
representation and update of synapses.

The primary language interpreter is the simulation language interpreter
SLI, which has a high level expressive syntax. Furthermore, a Python inter-
face called PyNEST has been created using the whole comfort of the Python
scripting language. [16] presents felicitous documentations for PyNEST and
SLI.

As a possible disadvantage, NEST prefers to maintain the, in many cases
unprecise, clock-driven algorithm, while mainly using the Runge-Kutta-Fehl-
berg integration method. A graphical interface is missing, which, neverthe-
less, does not affect a user-friendly operability. As well, the SLI simulation
language has, at the first view, a strange syntax, which takes much getting
used to it.

Further information on NEURON or NEST, tutorials and the current
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release can be found at the NEURON web site [8] and NEST web site [16],
respectively. A reference to network examples is given in the appendix A.1.
As well, more examples are freely available at the ModelDB [12].

The features of other simulation environments are discussed in detail in
[2].

2.2.4 Pros and Cons of Software Simulators

Pros One of the mentionable pros is the vast availability of simulation
environments and freely-available documentations and examples of modeled
neurons and networks, like the database ModelDB. Moreover, the time dis-
cretization e.g. serves as an opportunity, to interrupt an experiment and,
later on, continue at this point, under exactly the same or quite modified
circumstances, thus, creating an profitable experimental flexibility. When
regarding a re-design of already existing models, the effort does not take
much more than a simple programming practice.

Cons Firstly, the almost exact event-driven algorithm, as already men-
tioned, is very difficult to implement to more complex neural models, such as
the HH model, and otherwise takes too much time to simulate. Therefore, in
many cases, clock-driven algorithms have to be used in complicated neural
networks. However, the disadvantage of software simulation tools concerning
clock-driven algerithms is the fact, that the events occured during one of the
time steps are recorded as coincident events, thus providing for an artificial
synchronization , which decreases the exactness of the experiments. Conse-
quently, the experimenter himself has to decide on using small and simple
networks computed with an increased exactness, or, on the other hand, fast
experiments of huge networks but with a low level of accuracy.

2.3 Neuromorhic Hardware

The Electronic Vision(s) Group at the University of Heidelberg has cre-
ated a highly accelerated analog VLSI3 model of leaky integrate-and-fire
neurons with conductance-based synaptic plasticity. Furthermore, as an ex-
tension, a wafer-scale neural network model has been developed. This section
describes facts about this neuromorphic hardware tools and argues their pros
and cons.

The following information is mainly extracted from [3] and [15].

3Very Large Scale Integration: process of combining 103-105 transistor-based circuits

into a single chip
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2.3.1 Chip-Based Neural Network Model

Considering synaptic plasticity in biological models, the experimental
timescales range from milliseconds to minutes, thus including seven orders
of magnitude. In order to make this temporal range available to the experi-
mentalist, a highly accelerated analog VLSI model containing implemented
LIF neurons with COBA4 synapses has been developed. The chip reaches an
acceleration factor of 105, while recording the neural action potentials with
a temporal resolution better than 30 µs biological time. This wide range will
allow to study the different time domains from short term plasticity to long
time learning, and possibly even evolution [7].

Chip Overview The existing versions of the so called FACETS Stage
1 hardware are built using a standard 180nm CMOS5 process. The die size
comes up to 25mm2 including a number of 384 neurons, each connected
to a maximum of 256 conductance-based synapses. This maximum results
from the size of the chip. Concerning the inter-neuron connectivity, action
potentials (AP) are propagated as digital pulses, which are received by these
synapses.

Membrane Potential Dynamics The utilized neural model corre-
sponds to the described LIF model in section 2.1.1.

Synaptic Dynamics The synaptic weights are altered dynamically by
the implemented STDP6 algorithm and vary in the order of tens of millisec-
onds, thus slowly with time t. This long-term plasticity reveals a correlation
measurement of the time ∆t that has passed since the last pre- or post-
synaptic action potential, and, hence, modifies the synaptic weight stregth.

On the other side, the maximum conductance gmax
s (t) is governed by

the so called short-term plasticity, which is only based on the pre-synaptic
activity and emulates the limitation of resources involved in the synaptic
transmission.

In the FACETS Stage 1 neuron model, emitting a spike means that a
circuit separate from the neuron membrane releases a short voltage pulse,
which is delivered to the synapse circuits of possibly connected target neu-
rons. The neuron emits a spike as soon as an adjustable threshold voltage
Vthres is exceeded. Once a spike has been released, the membrane potential
is reset to an also configurable reset voltage Vreset, where it remains for the
refractory period τref , before it is excitable once again.

4conductance-based: simplest possible biophysical representation of an excitable cell:

protein molecule ion channels are represented by conductances and the lipid bilayer by

capacitors
5Complementary Metal Oxide Semiconductor
6Spike-Timing Dependent Plasticity

11



Detailed information about the layout and the operating principles of
the chip, as well as synaptic plasticity, can be extracted from [15] and [3].

2.3.2 Wafer-Scale Neural Network Model

Wafer Overview The wafer-scale model is an extension of the chip-
based FACETS hardware system introduced in previous section 2.3.1.

The wafer is produced by photolithographically applying sets of masks,
which contain the spatial patterning information for determined production
steps, on a round shape with a diameter of 200mm. Concerning technical
limitations, such a set occupies only a fraction of the full wafer area, the so
called reticle. During the production, the reticle is replicated several times
on one wafer.

Like the Stage 1 system, Stage 2 also uses a standard 180nm CMOS pro-
cess. Each wafer represents a Stage 2 unit, consisting of at least 44 reticles,
whereas the reticle itself contains 8 so-called HICANN7 chips. On each HI-
CANN chip, more than 115000 synapses and 8-512 neurons are implemented
on a 50mm2 surface. Summing up, one wafer comprises up to 180224 neu-
rons and over 40 million synapses. [3]

The implemented model is the adaptive exponential integrate-and-fire
(aEIF) neuron model with COBA synapses [1], which is presented in section
2.1.2. Like the Stage 1 system, Stage 2 models cell bodies as point neurons,
i.e. they do not consist of any compartements as in the actual biological
system. All in all, the wafer reaches an acceleration factor of about 104 [1].

Membrane Potential Dynamics The utilized neural model corre-
sponds to the described aEIF model in section 2.1.2.

Synaptic Dynamics Like in the Stage 1 system, COBA synapses are
implemented, the dynamics of which can be described by a characteristic
shape, consisting of a steep exponential rise followed by a plane exponen-
tial decay. The basic short-term plasticity mechanisms reveals hardly any
differences to these in section 2.3.1. For long-term plasticity, a more flexible
programmability of the weight modification functions is currently under de-
velopment. For a detailed discussion of the connectivity and synapse model,
see [3].

2.3.3 Pros and Cons of Hardware Emulators

Pros Firstly, the main advantage of the hardware emulation of neural
network models is the high scalability arising from the chip’s intrinsic paral-
lelism of the circuit operations [3]. It is possible to emulate neural networks
in real time or about 105 times faster, a value, which is only limited by the

7High Input Count Analog Neural Network
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inter-chip event-communication bandwidth. This allows the experimenter
to do extensive researches even for experiments requiring long biological
time. A further advantage is the analog nature of the VLSI circuits, which
increases the exactness of the experiment by preventing artificial synchro-
nization as in the case of software simulators. Furthermore, compared to
computing numerical solvers of differential equations, neuromorphic models
have a low power consumption. To date, any stimuli, like Poisson distributed
spike trains, can be implemented into the Stage 1 and Stage 2 hardware via
the PyNN interface (see 3.1.2).

Cons One of the disadvantages of the hardware models is a limitation
of flexibility, when thinking of changing the implemented model. In some
cases, a reprogramming can handle this handicap, but often it requires a
hardware re-design. Probably, the main disadvantage concerning the ana-
log nature and the, compared to software simulators, missing temporal dis-
cretization is the impossibility to abandon an experiment at any point in
time and restart it from this point again. Due to this fact, a dynamical inter-
action of a software simulator and a hardware emulator is a difficult issue.
Besides, the parameter ranges are limited in consequence the low flexibility,
and the experiments inclose unavoidable fluctuation noise.

2.4 Implications for the Presented Work

Taking all advantages and disadvantages of software simulators and hard-
ware emulators into account, it is remarkable, that many avantages of the
one approach are the disadvantages of the other and vice versa. Having this
complementary nature in mind, the following chapter, firstly, names oppor-
tunities for interoperability methods involving several software simulators,
and as an ensuing approach, presents a concept for such a software-hardware
co-simulation of spiking neural network models with the MPI-based frame-
work MUSIC.
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3 Interoperability of Different Neural Modelling

Tools

The development of simulator-independent modelling tools is a great
task, considering the many different simulators with their different scripting
laguages and graphical interfaces. Due to the fact, that the complex soft-
ware packages must yield reproducible and comparable results, and, further,
have hidden implementation-dependent flaws, the neuroscientific community
would profit from the ability to easily simulate a model with multiple simu-
lators, and, as a consequence, the fragmentation of researched effort would
be reduced.

3.1 Simulator-Independent Model Specification

In the following, three different approaches to developing simulator-
independent modelling tools are described, and relevant model environments
are presented.

The subsequent ideas are mainly extracted from [2], [5] and [6].

3.1.1 NeuroML

NeuroML is an open-source cooperation created mainly to support, de-
velop and extend the use of declarative specifications for models in neuro-
science, using an XML standard, which has the great convenience to be both
human- and machine-readable. There are several standards already devel-
oped, like MorphML (neuroanatomy), ChannelML (models of ion channels
and receptors), BiophysicsML (compartmental cell models) and NetworkML
(cell positions and connections in a network).

Such a declarative model specification has the advantage of the simplicity
in setting up models and guarantees a well-defined behaviour of distinct cell
compartments. Another attractive feature is that the language NeuroML is
not fixed forever, but easily extended, as far as new models are compatible
with original NeuroML specifications.

Otherwise, the declarative approach has the disadvantage of less flexibil-
ity, considering the fixed library of neuron models, synapse types, plasticity
mechanisms etc. Furthermore, it does not support every model yet, e.g. the
I&F-type is still under development [2].

Regarding the usage of NeuroML with specific simulators, the source
code has always to be translated either by accepting NeuroML documents
as input, while these are translated by the simulator, or applying the XSL
Transformation language to generate native simulator code (e.g. hoc and
NMODL in the case of NEURON).

Additional information can be looked up in [13].
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3.1.2 PyNN

As a programmatic alternative to NeuroML, PyNN [4] tries to obtain
more flexibility and a simple conversion between simulators. It allows to
write a simulation code for a model once, and then run the code on multi-
ple simulators, by defining a Python-based meta-language, which is either
translated by individual simulation engines into simulator-specific code, or
controls the simulator directly.

PyNN’s API8 consists of two parts, a low-level API (functions create(),
connect(), set(), record(), etc.), which is good for small networks and a high
flexibility, and a high-level API (classes Population and Projection, both
have different specification methods), which is designed to hide the details
and the bookkeeping, and have a one-to-one mapping with NeuroML. As
well, PyNN possesses standard cell models, that can be easily translated
into simulator-specific models.

Regarding the usage of PyNN with specific simulators, it currently sup-
ports NEST(via PyNEST), NEURON (via nrnpython), PCSIM, Brian and
the FACETS hardware. A key point is the Python scripting language, which
is well human-readable and simply to handle.

Detailed information, well-made documentations and examples can be
looked up at [4] and [14]. As well, appendix A.1 names further links for
PyNN examples.

3.1.3 MUSIC

In constrast to NeuroML and PyNN, MUSIC is a standard API allow-
ing large scale neuron simulators using MPI9 internally to exchange data
during runtime. Especially, it is designed to perform data transport of high
bandwidth and low latency within a cluster environment, while running a
multi-simulation (both see appendix A.2).

Ensuring, that the existing simulators can be easily adapted to it, MUSIC
provides for a run-time interoperability by allowing models written for dif-
fernet simulators to be simulated together in a larger system, whereby each
individual application does not need special adaptation to specific properties
of other applications.

As well, MUSIC guarantees the re-usability by providing a standard in-
terface, using C++, which is the standard for current high-end hardware.
This allows to build larger neural networks, without re-implementate them
into other simulation scripts. For example, this re-implementation would be
a problem, if a certain software does not support the favourite model.

As a key point, it should be possible to add MUSIC library support
without invasive restructuring of the existing code. For example, in future

8Application Programming Interface
9Message Passing Interface
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releases, PyNN could be extended to support multi-simulations using the
MUSIC library, e.g. publishing the named ports.

The further description introduces MUSIC’s operating principles and
main features. [5]

Phases of Execution A MUSIC-controlled multi-simulation is exe-
cuted in three different phases:

The launch phase starts applications on the participating processors. In
this time in particular, MUSIC is responsible for distributing and launching
the application binaries on the set of MPI processes. As well, for different
MPI implementations, the accession of the command line argument of the
MUSIC launch utility and the determination of the process ranks have to be
handled separately before MPI is about to be initialized. The launch phase
begins when mpirun launches the MUSIC binary, for example by typing:
mpirun -np music demo.music. In this case, demo.music is an example
for a configuration file and -np determines the number of participating pro-
cesses represented by (see A.1 for examples), while music is the special
launcher program, utilized by MUSIC. In [5], page 15f., a common configu-
ration file is described.

During the setup phase, applications are allowed to publish ports, the
time step they will use, and where data will be present. In a further step,
MUSIC establishs all the selected connections. The configuration parame-
ters can be read from the configuration file (see A).

In the runtime phase, the simulation time of applications is kept in a
consistent order, via tick calls at regular intervals in simulated time, which
is handled by each of the applications. Only at these tick calls, MUSIC is
allowed to use MPI to transfer data. This fragmentation into three different
phases of execution might have the disadvantage, that once a simulation has
reached the runtime phase, it is not possible to, for example, change back
to the setup phase and create new ports.

Distribution of Data MUSIC handles data transfer between applica-
tions that use different timesteps and different data allocation strategies. To
manage the amount of data to transfer, MUSIC uses shared global indices in
order to enumerate the complete set of data to be sent over the connection,
while each particular MPI process stores data using local indices. The index
map maps local indices to global ones. The data map includes an index map,
but also contains information about the residence within the memory, the
local data structure, and the type of data elements. Data to be transferred
can be regarded as a large array distributed over multiple processors.

Timing Considerations By using a global micro-timestep common
for all applications and an internal schedule, MUSIC ensures, that data is
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delivered at the appropriate time, concerning the fact, that different appli-
cations use different timesteps. If loops occur during the communication,
MUSIC handles the transfer via acceptable latency, handled by the input
ports, and thus, allows for data arriving late. The receiving application de-
clares how late, according to simulation time, data may arrive, and, hence,
specifies a delay to fullfill the purpose.

Furthermore, MUSIC, tries to minimize handshaking in order to decrease
unnecessary data traffic, which would charge the execution time of the multi-
simulation. Both parts of a connection pair locally calculate, when the actual
data transfer over MPI takes place. Since MUSIC uses blocking communi-
cation (see appendix A.2), one of the applications will, in practice, have to
wait for the other to reach the same point in its execution.

Further facts concerning time considerations are outlined in section 3.2.

Ports Each application declares its ability to produce and consume
data by publishing ports, which are regarded as so called proxy-objects
and provided with information about the datatype (continuous data, spike
events, messages). Ports are either sinks (input ports) or sources (output
ports). Pairs of ports form a connection. Data is transferred over the con-
nection from the producer to the consumer. Input ports (w.r.t. MUSIC) can
only have one connection, output ports can be connected to multiple input
ports.

In the current version of MUSIC, three kinds of ports are used:
To control the communication of multidimensional timeseries, e.g. mem-

brane voltages, continuous ports are utilized.
The communication of spikes will use event ports, which call special func-

tions to send and receive individual spike events. The procedure of receiving
spikes requires a kind of sorted buffer (in this case a priority queue). An
event, in this case, is a pair of an index identifier, consisting of either a
global or a local index, and a double precision floating point time-stamp.

Additionally, MUSIC uses message ports to allow for controlling infor-
mation between applications, e.g. in the form of time-stamps. As well, pa-
rameters can be altered or stimuli turned on via message ports, externally.
Every receiver on the receiver side has to announce its willingness to achieve
messages form the sender side.

Detailed information about the API, an instruction to adapt existing
applications, and a complete example to demonstarate the usage of MUSIC
(but not MUSIC with a neular simulator) can be looked up at [5]. Future
plans are well described in [6].

Pros & Cons of MUSIC The main advantages already were de-
scribed in the pleluding MUSIC description (see 3.1.3).

A disadvantage of MUSIC is the lack of broad user experience and
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available documentation as well as examples (personal experience, or fur-
ther reports from [6]). Furthermore, MUSIC only supports the simulators
NEST and MOOSE up to date. The adaptation of NEST (via PyNEST)
and MOOSE into MUSIC is well-described in [6].

3.2 Interaction Concepts using MUSIC

With regard to the figures presented in [5], the following approaches are
developed only by taking the written description of MUSIC into account,
but matching it perfectly.

Firstly, a sample timing consideration for a software-software interaction
via MUSIC, as it ought to operate, is described in detail. The example net-
work in this gedankenexperiment is depicted in figure 1. A and B are two
different simulators, simulating neural networks, individual neurons or cell
compartments with different speed and different timesteps, while exchanging
spike events via MUSIC, which provides for delays (including MUSIC and
MPI delays), thus, possibly representing axonal delays within the model.

Subsequently, an idea for a software-hardware spike interchange is sug-
gested, and a feasibility study is thought through. At the end, an instruction
suggests the preparing that work should be done and issues that should be
taken into consideration when actually implementing the presented concept.

A B

delay

3AU

3AU
speed=0.5x speed=1x

MUSIC

Figure 1: Sample Simulation.
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3.2.1 Software-Software Interaction

The following description submits some useful theoretical aspcets think-
ing of a parallel simulation with spike interchanging.

Concept A software-software interaction (e.g. via MUSIC) could be
well described by the following pseudo code:

1 // so f tware pseudo code
2 // w. r . t . b i o l o g i c a l t ime
3 // T sim : s imula t ion durat ion , de f ined e x t e r n a l l y
4
5 t r e c l a s t = 0 ; // t r e c l a s t : l a s t recorded time from oppos i t e sim .
6 t = 0 ; // t : own time
7
8 do {
9 send own time

10
11 i f send−queue . s i z e > 0 :
12 {
13 send events
14 s e t wait−ack true

15 }
16
17 do {
18 // t r e c upda t e : updated recorded time of the oppos i t e s imula t ion
19 // T t i ck opp : durat ion between t i c k s o f t he oppos i t e s imula t ion
20
21 check inpor t
22 i f event a r r i v ed : s t o r e event , send ack
23 i f ack a r r i v ed : s e t wait−ack fa l se

24 i f t r e c upda t e a r r i v ed : s e t t r e c l a s t = t r e c upda t e
25 } while ( ( t >= t r e c l a s t + T tick opp ) | | wait−ack )
26
27 continue s imulat i on un t i l next t i ck ,
28 apply r e c e i v ed events at appropr i a te time
29 t = t + T ti ck // T t i ck : durat ion between t i c k s , de f ined e x t e r n a l l y
30
31 } while ( t <= T sim )

The code consists in the main of a do/while loop, which advances until
the simulation time (see appendix A.2) is over.

At a tick call, MUSIC forces the simulator to send its own biologcal time
t, as a kind of control message, to let the participating target simulator know
about its own progress (line 9). Furthermore, the events stored in the priority
queue, which have occured during the last simulation step, are also trans-
mitted to the target, setting the ”waiting for an acknowledgement”-bool
(wait-ack) true (lines 13f). After this procedure, the simulator remains in
the tick position, while awaiting both, the acknowlegment of the broadcasted
events and the right moment to proceed until the next tick (line 25). Con-
cerning this right moment, the time T tick opp can be arbitrarily aligned,
according to the minimum time mismatch to reach during the experiment.
In this case, MUSIC determines a minimum tolerance time. In the examples
below (Figure 2 and 3), T tick opp always is the time between two ticks of
the opposite simulation.
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As long as the simulator remains in this stationary situation, the input
ports are checked (line 21). Now, the simulator is prepared to receive exter-
nal events, time messages and acknowledgements, produced by the parallel
simulation (line 22f). Arriving events, all of which have time stamps, are
buffered in a queue, and an acknowlegdement is sent to approve the arrival.
Furthermore, the received time message (t rec update) replaces the exist-
ing one (line 24).

If the time condition t >= t rec last + T tick opp is reached, and
the acknowledgements of all the sent events have arrived, MUSIC permits
the simulator to continue until the next tick, while applying the received
events at the appropriate or at the best possible time.

Example Run Figure 2 shows an example run for a parallel simula-
tion of two simulators A and B. The dark red areas represent the time during
which the simulators are actually executing their tasks, while the light blue
areas stand for the tick phase, when the simulators are stagnating. The light
green circles depict generated spike events. The simulation time evolves top
down in the schematic. Concerning the wall clock time and the biological
time, the precise time scales are not important for this thought experiment,
but in fact, the simulation usually will last longer as pictured here, thus, the
brown rectangles would be stretched in time. The numbers beside of the blue
areas represent the biological time. Bold arrows highlight the actual trans-
port of the events (ev) and time control messages (t), dashed arrows reveal
the acknowledgements (ACK), and dotted arrows simple time messages. All
the message types are taking an axonal delay of 3 arbitrary time units (AU)
into account, which is handled by MUSIC via MPI.

Here, B runs two times as fast as A, while performing two times as large
timesteps (T tick(A) = 2ms, T tick(B) = 4ms). The starting time of both
simulations is chosen freely, and does not affect the actual multi-simulation
progress (it has only an influence on the duration of the tick calls at the
beginning).

In the presented example, A and B are starting at the same time. At
the wall clock time 2AU , both have their first tick. Thus, they are sending
their events and, afterwards, are waiting for incoming events, time messages
or acknowledgements. At 8AU (w.r.t. wall clock time), simulation A, which
stagnates at biological time t = 2ms, has received its acknowledgement (wait-
ack is set false), and, therefore, is allowed to proceed, since the last recorded
time from B is 4ms, so the inequation is wrong. On the other side, simulator
B also gets the acknowledgement, but does not fulfill the time condition in
the inner while loop. Hence, B remains checking the input ports till such
time as the time condition is wrong.

Another interesting procedure is happening at wall clock time 18AU .
Here, A’s previous simulation step does not contain any events. Thus, the
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Figure 2: Software-Software Interaction Example. Simulator B is 2
times faster and uses a 2 times larger timestep than simulator A.
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simulation has not to wait for acknowledgements. Knowing, that B has sim-
ulated 4ms of biological time, the time condition still is false, which makes
simulator A continue immediately.

Considering the precision of our gedankenexperiment, the tolerance limit
is 4ms, as can be seen by checking the arrival of A’s event with the time
stamp 1ms (see green circle at biological time 1ms - this fact requires, that
the simulation has the same speed during the execution, which is not that
realistic, but in this case irrelevant). The first point in time, when this event
actually can be registrated by B is 4ms (biological time). In an extreme
case, this event might be happened directly after starting, which explains
the tolerance limit.

To reduce this limitation of precision, the experimenter should preferably
use equal timesteps dt. In order to avoid further imprecision, these timesteps
should be as small as possible, which, though, decelerates the whole experi-
ment (see section 2.2).

For events arriving before their time, MUSIC guarantees, that they are
applied at the appropriate time.
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3.2.2 Software-Hardware Interaction

Concept Now, one of the previous simulators is exchanged by a hard-
ware emulator. The software still functions as described in the upper part.

Considering the analog nature of the hardware, and therefore, the men-
tioned inability to interrupt and continue the emulation progress plus the ra-
pidity of the model dynamics (see section 2.3.1), the software-specific pseudo
code has to be adapted to the hardware’s features, still making it possible
to interchange spike events with a software simulator:

1 // hardware pseudo code
2 // w. r . t . b i o l o g i c a l t ime
3 // T sim : s imula t ion durat ion , de f ined e x t e r n a l l y
4
5 dt // dt : s imu la t ion t imes t ep (ms)
6 t next = 0 // t n e x t : durat ion of the next run (ms) , de f . e x t e r n a l l y
7
8 while ( t next < T sim ) {
9

10 send own time
11
12 i f send−queue . s i z e > 0 :
13 {
14 send events
15 s e t wait−ack true

16 }
17
18 t next = t next + dt
19
20 do

21 {
22 // t r e c l a s t : l a s t recorded time from (opp . ) s imula t ion
23 // t r e c upda t e : updated recorded time from (opp . ) s imula t ion
24 // T t i ck opp : durat ion between t i c k s o f t he ( opp . ) s imula t ion
25
26 check inpor t
27 i f event a r r i v ed :
28 {
29 s to r e event i n to ( expanding ) event playback memory
30 send ack
31 }
32 i f t r e c upda t e a r r i v ed : s e t t r e c l a s t = t r e c upda t e
33 i f ack a r r i v ed : s e t wait−ack fa l se

34 } while ( ( t >= t r e c l a s t + T tick opp ) | | wait−ack )
35
36 run hardware experiment : t = 0 . . t next ,
37 use extended event playback memory
38 }

This concept was created and deliberated during the documented in-
ternship project. It requires an external loop, which controls the emulation
between the starting and the varied stopping points, and additionally, acti-
vates the hardware’s event playback memory (epm).

In contrast to the simulator’s activity, the incoming events are not only
stored in a provisory queue, but in a spike train expanding at every tick (line
29).

Another difference is the fact, that the hardware has to be restarted at
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every tick, if the time condition in line 34 is wrong. After every restart, the
hardware runs the experiment again, this time a timestep dt longer than the
run before, while using the extended playback memory to insert the previous
as well as the new events into the experiment. This time, a while loop is
used (line 8), until the emulation time t next reaches the entire duration of
the experiment T sim. At every tick, t next is increased by dt, which can
be defined externally. Here, the mentioned times also refer to biological time.

The remaining progress does not differ from that of the software-software
co-simulation: At tick call, MUSIC provides for the interchange of the own
biological time and the occurred events stored in the sending queue. Subse-
quently, the emulator awaits the acknowledgement, and, as well, checks the,
already described, time condition t >= T tick opp + t rec last. As long
as the hardware is in the waiting phase, MUSIC forces it to check the input
ports for incoming events, updated progress times and acknowledgements.

Considering the outgoing spikes, the external program has to make sure,
that each time only the spikes occurred during the last timestep dt have to
be transmitted to the appropriate software simulation step.

Example Run Figure 3 depicts an example of a software-hardware
(S-H) run-time interaction provided by MUSIC. Here, again, the simulation
or emulation run is coloured dark red, the tick times light blue and the
events are light green.

Compared to figure 2, the added gradient in the emulation procedure
reveals, that the hardware restarts at every tick, and, runs an additional
timestep dt further (the red area becomes lighter).

In contrast to a real experiment, the emulation speed is illustrated as
4 times faster than the simulation speed. Actually, the hardware emulation
would exceed the simulation by several magnitudes (see section 2.3.1), which
could not be pictured in this case. In fact, the red areas on the hardware(H)
side would shrink, and compared to these, the ticks would take the main
part of the hardware’s experiment.

The rest of the experiment proceeds in exactly the same manner as the
previous example has already shown.

Due to incompleteness of the MUSIC interface and a lack of time and
know-how, an actual software-hardware interaction could not be realized up
to date, but a software-software communication via MUSIC using PyNEST
could be observed. In one of the experiments, the intern MUSIC-eventgenerator
generates randomly distributed spike events, and is connected to a spike de-
tector in a separate PyNEST-file and, additionally, to the MUSIC-eventlogger
via MUSIC. After running the experiment, both the spike detector and the
eventlogger display the same arriving times of the recorded events. The path
to the MUSIC-configuration file events in out.music and the launch file
nestlauncher.sh, through which MUSIC can access the PyNEST script,
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can be looked up in appendix A.1. In another experiment, which was named
sd.music, an integrate-and-fire neuron, which is influenced by a Poisson
distributed spike train containing excitatory and inhibitory stimuli, is con-
nected to a spike detector via the MUSIC interface.

In the next section, the preparing work for similar software-hardware
experiments is discussed.
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Figure 3: Hardware-Software Run-Time Interaction Example. Em-
ulator H is 4 times faster (which is very understated) and uses a 2 times
larger timestep than simulator S.
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4 Conclusion and Outlook

Reminiscing about the the previous section, a software-hardware run-
time interaction of spiking neural network models via the MUSIC interface
would be a possible endeavour. But, before experiments can be run, there
are still several things to be realised and deliberated.

Firstly, a preferably simple multi-simulation via MUSIC has to be got
to work. Therefore, the MUSIC implementations have to be created and
documentated for the simulators, which are about to be used. As a pilot
test, one could try to let a I&F neuron, which is excited by a set of Poisson
distributed spike trains, and a parrot neuron communicate. The only thing
a parrot neuron does is emitting the received spike events. The location of
the already prepared SLI code and the MUSIC configuration file can be
extracted from appendix A.1, but still some key words are missing.

Secondly, MUSIC classes should be built into the PyNN language, en-
abling the PyNN software to instantiate music out proxy and
music in proxies. This is the only way to make the hardware accessible for
MUSIC up to date. Having done this ”preparing work”, the experimenter
could try to build larger networks using PyNN, like the already created one
(see A.1). Here, two different neural populations (excitatory and inhibitory)
are connected with themselves via synapses with different weights w and con-
nection probabilities p. As well, a set of external Poisson distributed spike
trains, also consisting of excitatory and inhibitory spike sources, is affecting
the excitatory population (Figure 4). After connecting the two populations
via MUSIC, a noticeable decrease of emitted spike events of the excitatory
population should be observed.
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Figure 4: Network Example.

Thirdly, the previous hardware pseudo code should be implemented,
which lets the hardware restart at every tick, provides for an extendable
event playback memory, and a, by dt, extended simulation duration.

As a further step, if a software-hardware run-time interaction has suc-
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ceeded, the experimenter has to determine, what spikes actually are in-
terchanged. For example, after each emulation restart, the whole already
produced spike train could be transmitted to the software simulation. Here,
it should be asserted, that MUSIC has only the permission to make use of
the latest outcoming events. Otherwise, MUSIC could also make sure, that
events expire, if they arrive much too late (in biological time) on the other
communication side.

All in all, a software-hardware run-time interoperability of spiking neu-
ral network models is a possible issue, but there is still a lot of preparation
work to be arranged.
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A Appendix

A.1 Reference to Sample Networks

The example network models can be retrieved from by Dr. Daniel Brüderle.
Among these are models of neurons or simple networks built up with NEU-
RON (hoc files), NEST (PyNEST and SLI) and PyNN. Each of them has
got a header with a short description. These models can be viewed in the
respective directories found in the /basic directory. As well, the directory
contains the pictures presented within this documentation and further ma-
terial.

More examples can be looked up in the corresponding example folders
shipped with each freely-available simulation environment mentioned in this
context.

A.2 Useful Terminology

Blocking Communication In a blocking communication, each of the
participating systems in a parallel simulation is waiting for acknowledge-
ments of the partners after having sent data to parallel processes. During
this waiting time, the sending simulator pauses until a receiving message has
arrived. Taking into account that parallel processes contain delays, this fact
can have a vast effect on the simulation duration, or even lead to a deadlock.

Cluster Environment In a cluster environment, the workload of the
models to simulate is distributed across multiple machines. For example,
each of the simulating participants simulate a part of the cell or a neural
population.

Delays While, in real world, physical delays e.g. depend on the quan-
tities of the speed of light or represent axonal delays in neural transmission
mechanisms, in the simulation world, delays do not need to be affected by
the simulation models. Thus, time anomalies may occur. Therefore, a time
stamp often has to be assigned to sended events, or messages, to determine
a correct time ordering of events.

On the one hand, this correction provides simulation models’ repro-
ducibility, but, on the other hand, increases the simulator’s latency time,
thus, incresing the temporal duration of the simulation process. [11]

Handshaking Handshaking usually is a protocol-based mechanism in
parallel computing that, firstly, produces a communication channel, on which
all participating processes have to agree on the data to send, before the
actual data transfer begins. Though this process is very safe, it provides an
emormous additional amount of transfer traffic.
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Multi-Simulation A multi-simulation is a parallel execution of mul-
tiple applications.

Time Types Generally, it is useful to get familiar with the three dif-
ferent time types concerning simulation and emulation procedures.

The physical time (or, in this case, biological time) is the real temporal
duration of a natural process, which is about to be modeled.

In contrast to this, the simulation time is the simulators representa-
tion of time. For example, the actual time of the natural process can be
represented during the simulation as floating point values, whereby e.g. a
simulation time unit stands for an hour of physical time.

The so called wall clock time expresses the actual temporal duration of
any simulation process, which is measured by an external clock that is not
influenced by the simulator. [11]
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