On parameterization and debugging of PPU
programs
Internship report

Philipp Spilger

August 7, 2018

Contents

1__Introduction

2 Masking and Plasticity Rules|

V g . .

[2.1.1 Mask command in vector update rule]

[2.1.2 Boolean Mask storage| oL

[2.1.4 Tagged Mask structure|.

2.2 Plasticity Rule|] o

[2.2.1 MaskWrapperclass|. oo oo

|3 Sclieaulmél

3.4 Scheduler implementation| oo o000

3.4.1 Queueclass|

3.5 Notes on error handlingl

[4 Remote debugging]

4.1 Online PPU to host communicationl

4.2 Remote target communication|. L

4.3 PPU-side debugging software|

4.4 Debugging workflow| o

5T I = [sof : |

.1 Standard c library]

b.2 Target toolchain|

(5.3 Libstdct+4]

13
14
14
15
15
15
15
16
16
17
17

20
21
21
22
22

6 Discussion

[7__Outlookl

28

29

1 Introduction

The HICANN-DLS is a hybrid neuromorphic hardware processing unit. It features an
analog part consisting of neurons (LIF neurons on DLSv2) with synapses and a digital
part, spike routing and especially the Plasticity Processor Unit (PPU), which can alter
network parameters at runtime.

1.1 Neuron and synapse layout

Each synapse can receive stimulus by exactly one input, which can be either external
(from the FPGA) or internal from one of the neurons on the chip. To control, which
synapse receives stimulus from which source, each synapse holds a hash (address) to
check the origin of potential stimulus and only accepts stimulus, if the source address
matches the address set at the synapse. To control the strength of connections, each
synapse exhibits a 6bit weight, which scales incoming stimulus.

1.2 PPU

The PPU is a microprocessor, which incorporates the PowerPC-ISA 2.06 p. 245]
and additionally exhibits a vector unit for parallel operations on 128Bit vectors for
faster execution, which are sliceable in 16x8bit or 8x16bit. The PPU’s main purpose
is modifying the synapse weights based on state parameters, e.g. spiking causality of
individual synapses or current weights as well as external input, from now on called
plasticity. To enhance modification speed, the vector unit can directly process synapse
parameters vector wise, as depicted in figure

Figure 1.1: Vector access to synapses (gray rectangles) on DLSv2, displayed as blue
dashed lines, together with corresponding neurons (orange circles) and
synapse-neuron connections (black dotted lines).

1.3 Motivation

The prototype chip features 32 neurons with 32 synapses per neuron. Until now, mod-
ification programs were mostly written monolithic, i.e. only incorporating one weight
modification rule addressing all synapses. This leads to several upscaling problems. It
is expected, that bigger sized chips feature defect synapses and neurons, which exhibit
e.g. false weight scaling or time constants, or fire constantly even without synaptic in-
put. These parts should be excluded from modification rules to stabilize their behavior
to e.g. a non spiking state for defect neurons or a blocking state for defect synapses.
Additionally, larger chips enable multi-rule networks, with multiple (possibly different)
modification rules. The monolithic kernels forbid easy restriction of rules to dedicated
portions of the chip and to easily configure existing rules to coexist. Besides that, exe-
cution of the plasticity rule often was carried out through a simple loop, which makes it
difficult to stabilize timing on changes in the plasticity algorithm and to enable different
timing constraints of different tasks to be executed side by side. This work starts to
address these problems by:

1. introducing a mask commands and implementing storage methods, which mask
pasticity rules together with a modified (masking aware) vector write command,

2. deploying a common plasticity rule interface to enable interchangeability and reuse-
ability of plasticity kernels,

3. implementing a realtime scheduler, executing operations based on timing con-
straints.

In addition, remote debugging using the gnu debugger (gdb) to ease debugging of pro-
grams written and libc as well as libstdc++ support for the PPU to enhance usability
of the general purpose part of the processor is implemented.

2 Masking and Plasticity Rules

2.1 Masking

2.1.1 Mask command in vector update rule

Update rules are typically written in one monolithic assembler block using the vector
extension of the PPU to parallelize the algorithm to increase the execution speed. An
update rule somehow generates a vector (out) and afterwards stores it, e.g. to a hardware

address, see listing

| fxvoutx %[out], %[out_base], %[out_index]

Listing 2.1: Vector unit indexed write instruction. Vector out is written to the hard-
ware address specified by out_base and out_index.

To implement masking in an existiting update rule, only the write commands (fxvoutx
and fxvstax) have to be modified, see listing

fxvinx %[tmp], %[out_base], %[out_index]
fxvempb %[mask]

fxvsel %[tmp], %out], %[tmp], 1

fxvoutx %[tmp], %[out_base], %[out_index]

Listing 2.2: Vector unit mask instructions.

First, the unchanged values are read and stored in the vector tmp. Then there’s a
mask vector, which is entrywise compared to zero. The instruction fxvsel, with fourth
parameter set to one, entrywise selects an out entry, if mask is larger than zero or the
unchanged entry in tmp, if mask is zero and stores the result in tmp. Last, the tmp vector
is written to the hardware address specified by out_base and out_index. This allows to only
update specific vector entries, leave the other entries unchanged and by that executing
arbitrarily masked algorithms with the vector unit.

Note on performance

By masking a vector several times, for example if one half of a vector should be updated
by another rule than the other half, the number of vector executions rises linearly with
the number of rules to be executed on that specific vector. Eventually, the speed advan-
tage through parallelization of the vector unit is lost, when each vector entry is changed
individually. Therefore, speed optimization should consider minimizing the number of
vector executions by grouping entries with the same update rule together in as few
vectors as possible.

2.1.2 Boolean Mask storage

A typical update rule needs several mask vectors, e.g. to mask the whole DLSv2 chip,
64 possibly unique mask vectors are needed. Therefore, an efficient storage method is
needed. There are mainly two characteristics to be considered, memory consumption
and access speed. Three storage methods for single vector boolean masks are considered
in the following, vector intrinsics, i.e. byte arrays aligned in memory to 16B, unaligned
byte arrays, and bitsets. They are compared in table The speed penalty has to

method

advantage(s)

disadvantage(s)

vector intrinsic

16B array

bitset

Does not have a read speed
penalty compared to loading
a vector intrinsic.

not

Does imply 16 bytes

padded structures.

Only needs two bytes per
mask vector, which is 8 times
less than the other two meth-
ods.

16 bytes needed per mask vec-
tor, storage structures are 16
bytes padded, thereby there
may be unused space.
Compared to vector intrinsic
has a read speed penalty of
164(20) ppu cycles (measured
with compiler optimization -
02)

Compared to vector intrinsic
has a read speed penalty of
166(20) ppu cycles (measured
with compiler optimization -

02)

Table 2.1: Comparison of storage methods for boolean masks.

be set in relation to typical update rule execution times. In table two rules are
measured to take about 31 ppu cycles (simple constant rule) and 933 ppu cycles (stdp
rule) to update weights in one masked vector. The speed penalty of accessing a mask
vector relative to the rules therefore ranges between about 535% and 18%. The array
storage method has equal memory consumption to the vector intrinsic storage method,
but with significant speed penalty and was therefore discarded. A full set of mask
vectors, stored as intrinsics, i.e. 64 for DLSv2, needs 1kB space in memory. As the ppu
has 16kB internal memory available, the space needed in comparison to the bitset (128B
for 64 vectors) was weighted less important than the speed penalty of generating a vector
from a bitset entry each update run. Additionally to the mask vector, there’s information
needed as to which hardware vector address space the mask vector corresponds (out_index
in . There are two ways to deliver this information. Either all vector addresses are
iterated, and therefore, a mask vector for each hardware vector address is needed, or the
address has to be specified explicitly alongside the mask vector. The latter allows to not
specify vectors, which are fully disabled, thereby saving memory, but with more memory
consumption for every vector, which is (partially) enabled. This is chosen, because the
address memory usage is small (only 1B more for each vector) and the linear memory

consumption scaling with number of (partially) enabled vectors treats few and many
mask vectors equally. This mask storage method is implemented in the structure.
In addition to the above, fully enabled vectors are only stored by address, which saves
16B per fully enabled vector. Thus, the proposed performance optimization in [2.1.1]also
optimizes the memory usage of the mask storage, thereby not creating an additional,
inflicting goal to be achieved.

2.1.3 Mask structure

The Mask is a size-templated structure holding an arbitrary number of vector addresses
and addressed vectors. Vectors to be fully updated are only stored by address, partially
masked vectors are stored by address and associated mask vector. The size and division
between fully and partially enabled vectors is compile time fixed. The Mask is size
optimized and because structures incorporating vectors are 16B aligned, separate address
and vector arrays were chosen over a more convenient array of address-vector pairs for
the partially masked vectors. One addressed vector therefore needs 17B space (16B
vector, 1B address) as opposed to 32B when implemented in mixed pairs (in which the
address would be 15B padded).

typedef uint8_t vec_addr;
template<size_-t num_full_vectors, size_t num_partial_vectors>
struct Mask {

vec_addr full_vec_addr[num_full_vectors];

vec_addr partial_vec_addr [num_partial_vectors];
vector uint8_t vectors|[num_partial_vectors];

s

To allow arbitrary modification rules to simply update all vectors in a Mask, Mask has
a functor, executing a vector update rule on all vectors stored in it, as shown in listing
2.9

template<size_t num_full_vectors, size_t num_partial_vectors>
struct Mask {

template<class T>
void apply-vector_rule(
& t,
void (T::xvector_rule)(
vec_addr
vector uint8_t&));

Listing 2.3: The interface of the vector rule functor of a Mask.

The Mask storage method is depicted in figure

fully enabled vector, address 0

| }IIIIIIIIIIIIIIII
77777777777777777777777777777777777777 partially enabled vector, address 3

Mask<1,1> this_mask = {

{0}, {3},
{{¢0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,1}}

}s

Figure 2.1: Abstract mask with enabled synapses highlighted yellow and a corresponding
Mask structure.

Note on optimization

For smallest memory consumption, chip usage should be optimized for masking prefer-
ably full vectors. Best case memory consumption of a Mask is 1 - #(vectors enabled)B.
Worst case memory consumption is established, if there are only partially masked vec-
tors. Then, memory usage is 17 - #(vectors partially enabled)B, upward ceiled to full
16B multiples because of struct alignment.

2.1.4 Tagged Mask structure

The previous approach fits static masking without the need to switch plasticity of
synapses during runtime. If switching is required, the single synapse state would need
to be stored in as many Mask structures as there are plasticity rules to be switched be-
tween, which in principle unnecessarily increases memory consumption. To accomodate
this usecase, a different storage method is described in the following. By again using
16 - 8bit vector intrinsics as base storage type, the membership of synapses to a certain
plasticity rule is encoded in the value of the vector entries, in the following called tag.
This leads to possibly 256 differentiable plasticity rules without space overhead com-
pared to the Mask structure. The structure storing tag vectors is called TaggedMask in
the following. In order to still work with the same mask command, described in listing
and thereby to omit the need to modify a plasticity rule because of a different mask
storage method used, a binary mask vector has to be created from the TaggedMask
storage at each invocation. This storage method permits to dynamically change the
synapse-plasticity rule link at the cost of a significant speed penalty because of the tag
to binary vector conversion. Figure shows the TaggedMask storage method. Similar
to the Mask structure, the TaggedMask provides a functor for executing a plasticity rule
operating on vectors, shown in listing [2.1.4

template<size_t num_full_vectors, size_t num_partial_vectors>
struct TaggedMask {

template<class T>
void apply_vector_rule(
T& t,
void (T::* vector_rule)(
vec_addr ,
vector uint8_t&),
uint8_-t tag);

IE

address 0

l_ 7777777777777777777777777777777777777 }IIIIIIIIIIIIIIII
address 3

enum tags : uint8_-t {
blue ,
green ,
yellow

}s

TaggedMask<2> this_mask = {

{0,3},
{

{yellow ,... ,yellow},
ue , blue , green , blue , blue , blue , blue , green,
bl bl bl bl bl bl
green , blue , blue , blue , blue , blue , blue , green}

}
}s

Figure 2.2: Abstract multiple-plasticity-rule-mask with synapses highlighted according
to tags and a corresponding tags enumeration together with a TaggedMask
structure.

2.2 Plasticity Rule

To transparently allow using several update rules at once and reusing rules, the update
rules are to be encapsulated, and made accessible through a common interface. A plas-
ticity rule has to have a function updating vectors, compare listing [2.4] If the vector
update function is masking aware, the described Mask or TaggedMask functor then can
update all entries enabled by that mask according to the vector update function of a
plasticity rule. This calling sequence is unintuitive though compared to calling a function
of a plasticity rule, that updates entries according to an associated mask. The sequence
flip is done in the MaskWrapper and Tagged::MaskWrapper wrapper classes.

class VectorRule

{

10

public:
VectorRule ()
{
}

void vector_rule(vector uint8_t& mask_vector,
uint8_t vector_address)
{

}

}s

Listing 2.4: An example vector rule implementation.

2.2.1 MaskWrapper class

A plasticity rule is an object promoting an update function (run), that updates e.g.
synapse weights according to an associated Mask or TaggedMask mask. Therefore a
templated wrapper class was developed, inherited from a vector rule class.

template<class VectorRule, typename Mask>
class MaskWrapper : VectorRule
{
Mask& mask;
public:
template<class ... Args>
MaskWrapper (Mask& mask, Args... args) : mask(mask), VectorRule(args...)
{
}
void run ()
{
this—>mask.apply_vector_rule (
static_cast <VectorRulex>(this),
&VectorRule:: vector_rule);
}
b

Listing 2.5: An example implementation of a wrapper class for a vector plasticity rule
VectorRule operating on a Mask.

The run function calls the associated mask functor with the MaskWrapper’s vector update
rule inherited from VectorRule. Similarly, the Tagged::MaskWrapper stores a reference to
a TaggedMask and additionally needs a tag, stored during construction.

2.3 Performance measurements

To measure the performance drawback of binary masking, two plasticity rules are ex-
amined, a constant rule and a stdp sampling rule [4, p. 58]. In the constant rule, only
the write command of weights is to be masked, in the stdp sampling rule, the causal
and acausal measurement reset command is to be masked additionally. It’s therefore ex-
pected, that the performance drawback in the stdp sampling rule is larger (absolutely)

11

than in the constant rule. Additionally, the time consumption is expected to depend
linearly on the number of vectors updated and not to depend on the entry values of
the mask vector, e.g. the time consumption shouldn’t differ between partially and fully
enabled vectors. Tables and figure [2.3] show the measurement results.

computation time [ppu cycles]

rule masking enabled masking disabled
constant 3720(100) 2510(50)
stdp sampling 70050(80) 48930(100)

Table 2.2: Comparison between the computation time with and the computation time
without masking enabled, with compiler optimization -O2.

4% 10° Time consumption of a constant rule Time consumption of a stdp sampling rule
X
—— linear fit —— linear fit

3x103 measurement / 6 x 10% measurement

2% 103 4x10*
7 2 w7
o o
S < 3x10*
9 9
> >
g g
g 10 g 2x 10t
5 A =1

-
/,,/"
yd
e
6x 102 e
-
/,,// 104 4
4x102 T T
10! 2x 10! 3x10' 4x10t 6x 10 10! 2x10 3x10' 4x10t 6x 10
updated vectors # updated vectors

Figure 2.3: The computation time in dependence of the number of vectors updated, with
compiler optimization -O2.

computation time [ppu cycles]

rule full mask partial mask
constant 3621(27) 3816(25)
stdp sampling 69999(80) 70094(51)

Table 2.3: Comparison of the computation time of masking enabled rules between full
vector and partial vector masking, with compiler optimization -O2.

For the two rules examined, the binary masking is about 30% of the total computa-
tion time. Figure shows a linear dependence of the computation time on the number
of vectors updated, as expected. Additionally, the computation time doesn’t differ sig-
nificantly between updating whole vectors and updating partial vectors, only the total
vector count matters, compare table

12

3 Scheduling

Deploying several plasticity rules at once and allowing defined timing of changes to
hardware parameters asks for a task scheduling system, that runs arbitrary commands
at defined times and allows defining execution order as well as logging, whether requested
timing constraints were fulfilled. Until now, plasticity rules are typically run in a loop
on the PPU, as can be seen in listing

bool condition = true;

while (condition) {
run_my_rule ();
condition = check_condition ();

Listing 3.1: Plasticity rule execution in a simple loop.

This approach has mainly two drawbacks. First, there’s no easy possibility to ensure a
certain period time between successive executions of the plasticity rule. This leads to
uncontrolleable time period changes, if the underlying plasticity algorithm is changed,
e.g. by changing the number of synapse vectors, it operates on. Second, there’s no easy
possibility to implement multiple tasks with different timing constraints independently
from each other. Dependent implementation can be done via only updating a certain
task e.g. each 3rd loop count, which nontheless only implements relative and doesn’t
implement absolute timing constraints. To solve the need for absolute timing constraints
to be specified for multiple tasks independently from each other, an earliest deadline first
scheduler was implemented. An earliest deadline first scheduler tries to ensure execution
start of a task until a certain absolute time (deadline) by prioritizing execution of the
task with the earliest (i.e. smallest) deadline. It does not need to know the task’s time
consumption beforehand, which is the case with a rate monotonic scheduler. Because
knowing the time consumption beforehand involves measuring each task’s duration in
advance, which is not possible for stochastic rules or not feasible and by online change
of task priority creates additional computation time needed, the earliest deadline first
scheduler is chosen. The scheduler handles an arbitrary number of services and event
sources. Services are identified by an ID and execute a function or a class member
function via service.exec(). An event is a pair of a service ID and a deadline, until which
the event’s service should have been started. Event sources are abstract objects, which
can be queried for new events via source.next_event(time). A timer is an event source using
the supplied absolute time to decide whether to generate a new event or not.

13

3.1 PPU timer register

The PPU provides a 64bit wide special purpose timer register counting single clock cycles.
It’s precision is therefore sufficient for arbitrary timing demands. The PPU doesn’t have
a 64bit integer division unit. Therefore, operating on 64bit times is significantly slower
than operating on 32bit times. With a clock frequency of around 500MHz [2, p. 172],
32bit times experience overflow after ¢ ~ 8.6s. Because experiment time is not bound to
be that short, times can’t be always cast down to 32bit integers. To account for that,
the time type can be set to either 32bit or 64bit unsigned integers and additionally,
the time can be bitshifted for a larger count until overflow occurs with the tradeof of
a smaller resolution, see eq. where t is the time from the timer register in 64bit
representation, ¢ is the shifted time in 32bit representation and s is the number of bits
shifted.

tea

= 5o 5€1{0,...,63} (3.1)

t32

3.2 Services

In order to establish a common interface for execution commands, the Service class is
developed, allowing to execute an arbitrary function or class member function of an
arbitrary class by calling service .exec() A service has only one exec function and therefore
allows only access to one command. In order to allow several e.g. class member functions
of the same class to be made available as services, a service for each member function
has to be created. A service is identified by ID, an integer, in order to allow mapping
(non-templated) events to existing services, as described in A service can be created
as in the following example described in listing (3.2

void func() {}
service_id func.id = 1;

class C

{

public:

void run() {}
b
C c;
service_id class_id = 2;

auto func_service = Service_Function<func_.id>(&func);
auto class_service = Service_Class<class_id >(c, &C::run);

Listing 3.2: Exemplary creation of a Service for a function and a class member func-
tion.

14

3.3 Event sources

A scheduler organizes events to be executed. Since the PPU’s memory is limited, events
have to be created during runtime. To allow different sources of events, e.g. sources for
single events or multiple events at once, a common event source interface is needed. An
event source can be queried for (a) new event(s) through a function call, which takes the
current absolute time as argument and returns an event, if an event is to be scheduled.
The declaration can be seen in listing

‘ bool Source::next_event (Event& event, time_t t);

Listing 3.3: Event source next_event function declaration.

Two commonly demanded cases of event sources are periodic and oneshot timers, which
are implemented and are described in the following.

3.3.1 Periodic timer

To allow for periodically timed events, a timer class was developed. A timer has the three
timing parameters start time, period time or time until repeat and number of periods to
run. Additionally, a timer has an associated service for which events get generated. The
timer class also stores the number of lost periods, i.e. periods without an execution, for
timing validation. The timer generates a new event once at entering a new period with
the next execution time as deadline. Events for missed periods don’t get generated, but
their loss is counted for later examination.

3.3.2 Oneshot timer

To allow for single events, a oneshot timer was developed. It has two timing parameters,
deadline and earliest time to generate the event. As the periodic timer, a oneshot timer
has an associated service for which the event eventually gets generated. Unlike with the
periodic timer, missing the earliest to be run until deadline timeframe does not imply,
that the event doesn’t get generated, since execution at all is weighted more important
than exact timing for single events.

3.4 Scheduler implementation

The scheduler provides an event queue and an execution loop. All incoming events are
stored in the queue, implemented as fixed-size circular buffer of events. The execution
loop repeadetely queries event sources, pushing fetched events onto the queue, sorts the
earliest deadline event first, afterwards pops the first event in the queue and executes
its service. The execution loop can be controlled externally either by PPU timing or by
e.g. signals written from the FPGA to PPU memory. The control flow implemented in
the scheduler execution loop is shown in figure 3.1

15

exit

program |~ program

execute
earliest
event

Figure 3.1: The scheduler execution loop and its control flow.

3.4.1 Queue class

Queue is a templated circular buffer of compile-time fixed size. Elements can be pushed
to or poped from the Queue. Additionally to this circular buffer capabilities, the elements
currently stored in the Queue can also be accessed as if Queue was a dynamically sized
array (with upper size limit), indexed from the next to the last to be poped element.
This enables easy implementation of ordering algorithms as needed by the scheduler.
Queue keeps track of occuring buffer overflow and also saves the maximally reached
number of elements stored since creation. This enables users to examine performance
issues related to possibly too small queue size.

3.4.2 Scheduler class

The Scheduler class is created with the queue size:

|auto scheduler = Scheduler<Queue_size >();

Scheduling starts by calling

scheduler . Execute (SchedulerSignaller ,
Tuple<Services... >,
Tuple<EventSources... >);

with event sources and services provided as tuples. The SchedulerSignaller controls the
execution loop flow by providing an interface to the control signals wait, finish and exit,
as described in figure [3.I] The signaller is implemented in two ways. There’s a mailbox
signaller listening on a memory address for external control signals and there’s a timer
based signaller, similar to a timer providing control signals based on start, finish and
exit times to be specified.

16

3.5 Notes on error handling

Providing the scheduler execution loop with event sources generating events for services
not included in the provided service tuple is unrecognized but does no harm except
unnecessary time consumption. It is assumed by design, that service IDs are unique
to an execute loop. Providing an execute loop with several services with the same ID
causes the foremost service in the service tuple to be executed, once an according event
is scheduled. Scheduling correctness in terms of timing can be verified by checking, that
neither queue overflow nor event loss to timers occured.

3.6 Performance measurements

The scheduling performance is tested by measuring the time consumption of (parts of)
the execution loop in dependence of the number of services and timers to be scheduled.
Measurements are carried out for the 32bit and 64bit time type. Table shows the
time consumption for queue read and write operations. Table 3.2 shows the time con-

computation time [ppu cycles]

time type pop push
32bit 85(+7) 90(+51)
64bit 87(+32) 83(+53)

Table 3.1: Comparison of queue read and write operations between 32bit and 64bit time
type, with compiler optimization -O2. The uncertainty is due to branch pre-
diction.

sumption of Timer::next_event (...) in dependence of whether the time supplied is after the
timer’s stop time, at a period or at a period with a missed period. Table shows the

computation time [ppu cycles]

time type next_event == true next_event == true and a missed peI‘iOd next_event = false
32bit 136(+75) 150(+28) 118(+23)
64bit 211(+131) 264(420) 166(+20)

Table 3.2: Comparison of Timer::next_event between 32bit and 64bit time type, with com-
piler optimization -O2. The uncertainty is due to branch prediction.

time consumption of TimerOneshot::next_event in dependence of whether the event has not
been fetched and there’s an event to be fetched, there’s no event to be fetched because
time is too early or because an event already has been fetched. Queue access time
doesn’t depend on the time type used, as shown in table indicating, that memory
access is fast compared to calculating the correct position to be read or altered. The
implemented periodic timer is between about 40% and 70% slower, when used with 64bit

17

computation time [ppu cycles]

time type next_event == false, t00 early next_event == true next_event = false, already fetched
32bit 105(+36) 119(+4-20) 97(+20)
64bit 123(471) 137(421) 101(+20)

Table 3.3: Comparison of TimerOneshot::next_event between 32bit and 64bit time type, with
compiler optimization -O2. The uncertainty is due to branch prediction.

times compared to 32bit times. The oneshot timer also shows this difference, but not as
pronounced as the periodic timer. Both timers are fastest, if the submitted time does
not issue creation of a new event, i.e. next_event returns false, which is good, since then
unused or waiting timers don’t slow down as much as working timers. The sorting is im-
plemented as a linear search and a swap. The time consumption is therefore expected to
depend linearly on the number of events to be searched, as shown in figure Sorting
of events with 64bit time type is about 10% slower compared to 32bit times.

18

Sorting earliest deadline event first

7000 1 —— linear fit, time type 32bit, t(n) =77 -n + 297
linear fit, time type 64bit, t(n) =84 -n + 369
60004 ¢t ~measurement, time type 32bit ¢
¢ measurement, time type 64bit
__ 5000 A
0n
Q
S
0 4000 ~
o}
o
2
v 3000 ~
£
2000 ~
1000
0 = T T T T T

10 20 30 40 50 60 70
events to be searched

Figure 3.2: The computation time of sorting the earliest deadline event first in the queue

in dependence of the number of events to be sorted, with compiler optimiza-
tion -O2.

19

4 Remote debugging

Debugging of PPU programs was already determined necessary by other DLS users.
During developement of plasticity rule masking and time scheduling, it became apparent
also to the author, that an online debugging capability would ease developement. Until
now, debugging is limited to saving program states during runtime to the mailbox, a
dedicated 4kB fixed size area in the PPU memory, reading out the written variables or
results after a program run, evaluating the results and running the program again, until
the result matches the goal to be achieved.

This approach is problematic. First, since it’s a pure kernel, that’s executed, there are
e.g. no perfect memory guards in any case preventing the stack from growing into the
program memory region m This may lead to faulty behavior of the program execution
such that the program starts over and over again, no results get written at all to the
mailbox region to be evaluated or the mailbox region gets overwritten by the faulty
program. This prevents the developer from gaining any insight into why the program
fails in executing correctly. Second, there’s no way of gaining insight into the program
state or changing the program during runtime. This especially leads to longer debugging
time needed, if there are multiple problems with the program, since one has to implement
an assumend fix of one error, run the program again from the beginning, check, if the
error is gone and continue with the next.

On the contrary, host-software, e.g. software written to be executed under a linux
operating system, can be debugged online, which means, the program can be started
with a debugger, run to a certain state, stopped and investigated, eventually changed
and continued to run from the point it was stopped until the next specified state. This
way, the program state, e.g. register values, can be looked at at arbitrary positions in the
program execution and presumed fixes for faulty behavior can be implemented without
having to restart or even recompile the program under investigation.

Under gnu/linux, the standard debugger is called gdb (gnu debugger). It is widely used
for debugging host-software and thus its application to debugging PPU software doesn’t
involve learning a new tool from a developers point of view. The difficulty with porting
gdb to be used with PPU kernel programs is, that gdb itself can’t be run on the PPU,
since it’s the operating system on the PPU, which is to be debugged, there wouldn’t
be enough memory to run gdb and there’s no online communication implemented to
the PPU until now, which is needed in order to issue commands to gdb or query state

'There is a program memory region protection, which works by checking the stack pointer position
against a redzone region, located between stack pointer initial position and the program memory re-
gion, during function prologue. It thereby only catches too large stack growth, if the faulty function’s
stack allocation doesn’t exceed the redzone size. Otherwise, the redzone is possibly unrecognized
overstepped.

20

variables. Luckily, gdb is already set up for debugging remote targets not running on
the same platform or operating system. To achieve that, gdb has a remote protocol
implemented|1], with which the debugger can communicate with the target program to
be debugged. With this, the first two problems are solved, leaving the gdb to target
communication, translating gdb requests into tasks for the PPU and creating responses
back to gdb to be implemented.

4.1 Online PPU to host communication

The hicann-dls is run with host software creating FPGA programs, which are sent to the
board’s FPGA executing the created programs. After execution, the host can evaluate
the last program’s results and create new FPGA programs to be executed. With this,
it is also possible to set and read out PPU memory. The PPU runs independently from
the FPGA program or the host software, until something in its memory is changed by
the FPGA. This allows communication during runtime by having a dedicated input and
output buffer region in the PPU memory. The PPU program is started and afterwards,
sufficiently short FPGA programs get created, which read out the output buffer memory
region. Changes in this region get evaluated by host software, processed and sent to
gdb. On the other hand, the host can communicate with the PPU by issueing FPGA
programs, which change the input buffer memory region, at which the PPU watches for
changes. Communication speed is limited by the duration of a single FPGA program and
the buffer size, but since debugging only requires communication, if interaction with the
developer is necessary, communication speed of PPU and host isn’t the limiting factor.

4.2 Remote target communication

The host software uses the haldls hardware abstraction layer to build FPGA programs
in order to start up and communicate with the PPU program to be debugged. Com-
munication of the host software and gdb is established via TCP/IP and it’s therefore
possible to debug programs without the need of a physical dls board standing nearby
the computer running gdb.

The combination of PPU program with debugging communication extension and host
software communicating with the PPU and gdb is called gdbserver and typically is
not split, but is one program, if the machine to be debugged has direct access to e.g.
an ethernet or a serial line connection, and the memory overhead of the debugging
communication software is not significant compared to the program to be debugged.
Since these two requirements don’t hold for the PPU, taking away as much complexity
of the debug communication as possible from the PPU program is chosen. This way, the
PPU debugging software deals with querying and setting register values, flushing the
cache, replacing instructions at step requests and exiting the debugging loop, since these
are the only things not accessible from the host software. The host software deals with
deploying the PPU program, querying run status, reading and writing PPU memory,
request categorization from gdb requests and response creation complying with the gdb

21

remote protocol. Figure shows the distribution of handling gdb requests and the
communication between gdb and the PPU.

gdbserver

3

PPU-stub (c/3955)

get registers

|
gdb host (c/a155) TCP/IP 3 haldls host (c/3985)
gdb or user generated 2 get memory
commands or requests... 3 set memory
|
3 bidirectional
| | in-PPU-memory
| .
communication 3 3 buffers
|
|
|

’ interrupt handler ‘

. set registers
interrupt return

Figure 4.1: Description of debugging communication (red), request distribution of gdb
requests in gdbserver (blue) and structure of the PPU-stub.

step

continue

4.3 PPU-side debugging software

The PPU-side debugging software, developed by Timo Wunderlich, is split in mainly two
parts. An exception handling function is implemented, which gets called, whenever the
PPU program can’t handle an error that occurred. This exception handling function then
enables communication to the host software via reading and writing to the in-memory
buffers. Eventually, when the exception is resolved, the developer can e.g. exit the
exception handler function and continue execution of the program. The second part is a
breakpoint function, which executes a trap instruction. A trap is an instruction, which
prohibits the program counter to increase, triggering an exception and by that allowing
the developer to manually enter the exception handling function, enabling debugging
communication at arbitrary program states.

4.4 Debugging workflow

In order to use the debug facility, a developer needs to include the PPU debugging
software header and insert the breakpoint function at program positions of interest.

#include ”libnux/ppu—stub.h”

// interesting program state
breakpoint ();

22

Listing 4.1: Manual setting of debug breakpoints in a PPU program.

The host debug software is to be run with an allocated dls board, the PPU program to
be executed and a specified TCP port number. The PPU program has to be provided
both stripped for inserting into the PPU memory and non-stripped in order to let the
host software automatically determine the addresses of the communication buffers in the
PPU memory.
user@host: ppu_gdbserver \

—port 54321 \

—board—id 07 \

——program my_-ppu-program. bin \

——stripped —program my_ppu_program. binary

Listing 4.2: Options to startup the PPU gdbserver.

At the same time, gdb has to be started, the architecture has to be set to nux, and the
remote target has to be connected.
set architecture powerpc:nux
target remote host:54321
Listing 4.3: Setting of the target architecture and connecting to a remote target inside
a running gdb instance.

This establishes a connection of gdb to the remote program and queries information,
once the remote program has reached a breakpoint. The subset of gdb commands im-
plemented so far for a PPU target can be seen in table

command functionality

quit Exits gdb and the remote host software as well as the PPU program.
info register Shows the current general and special purpose register values.
info vector Shows the current vector unit register values.

info all-registers Shows all register values.

continue Continues execution by leaving the current interrupt.
backtrace Shows backtrace of all stack frames.

finish Executes until the current stack frame returns.

return Return to the outer stack frame.

set variable name = value Set the variable name to some value

print name Print the value of variable name.

break function Set a breakpoint at the beginning of the function function.

set $kv0.v16.int8 = {...} Set the value of vector register 0 to some value.

Table 4.1: Currently supported gdb commands for PPU programs.

23

5 Towards a semi-hosted software
environment

The programs written for execution on the PPU are kernel programs. That means,
there’s no operating system running on the PPU executing written applications. The
written programs themselves are the operating system and the only program running at
a time on the PPU.

As a consequence thereof, the software environment is missing parts normally found
when developing applications to be run by an operating system. Most notably, there’s
neither a standard c library nor a standard c++ library, since these require an underlying
operating system to issue certain requests to, called system calls, e.g. to allocate more
memory on the heap, to open a file or to exit an application.

The c++ standard library provides certain features, e.g. std::bind or std::tuple, which
are helpful in providing scheduler functionality, compare e.g. because they allow
variables to be bound to a certain task, meaning the task ’knows’, which arguments it
was created with (std::bind), or handling several possibly different tasks in a uniform
manner (std::tuple).

The standard c++ library can only be build including these features, if there’s an
underlaying standard c library available, because for certain features, e.g. new or file
handling, there are again system calls required.

5.1 Standard c library

There exist serveral standard c library implementations. Typically found on gnu/linux
systems, there’s glibc (gnu c library), which has the largest functional coverage, but
therefore creates large executables not suited for embedded systems. Also there exist
several c libraries requiring linux header files to be present, e.g. musl libc or uClibc.
Because of that, they can’t be used for the PPU, since on the PPU a custom kernel, i.e.
not linux is to be targeted. Besides those two, there’s Newlib. It doesn’t require special
operating system headers but just implementations for some system calls to be present
and because of that was chosen to be suited best for porting to targeting PPU kernel
programs. Also, the developers of Newlib help in porting to a new operating system by
specifically stating the required systemcalls to be implemented and even provide stub
(i.e. non functional) implementations [3] of every system call required.

The required 20 system calls are shown in table together with a short description
and explanation on whether a functioning implementation can be provided for the PPU
or more specifically for kernel programs running on the PPU.

24

system call

functionality

Can it be implemented targeting
kernel programs for the PPU?

_exit
close

environ

execve

fork
fstat
getpid
isatty

kill
link

Iseek
open
read
sbrk
stat
times

gettimeofday

unlink

wait
write

Exit a (userspace) program.
Close a file.
to environment

A pointer
variables.

Thransfer control to a new
process.

Create new process.

Status of an open file.

Get process 1D.

Query, whether an output
stream is a terminal.

Send a signal to a process.
Change the name of an exist-
ing file.

Set position in a file.

Open a file.

Read from a file.

Increase allocated memory.
Query the status of a file.
Timing information.

Get current time.

Remove a file’s directory en-
try.

Wait for a child process.
Write to a file.

Yes, wrapper to exit of kernel pro-
gram.

No, since there’s no file system im-
plemented in the PPU kernel.

No, since a kernel has no sur-
rounding operating system provid-
ing these variables.

No, since there’s no surrounding op-
erating system executing userspace
programs and creating new pro-
cesses.

No, see execve.

No, see close.

No, see execve.

No, since there’s no output stream
functionality implemented.

No, see execve.

No, see close.

No, see close.

No, see close.

No, see close.

Yes.

No, see close.

Yes, but the only functionality with-
out gettimeofday is a wrapper to a
assembler call already implemented
in libnux.

Yes, in principle, but because of
clock resets at kernel startup, it’s
implementation doesn’t make sense
and a clock frequency measurement
would be necessary to translate the
clock counter state to e.g. seconds.

No, see close.

No, see execve.
No, except for a custom implemen-
tation writing e.g. to in-memory

buffers.

Table 5.1: List and evaluation of system calls to be provided for newlib.

25

It can be seen, that several system calls deal with executing other programs or handling
processes, which is both neither implementable nor relevant in kernel only programming.
The system calls dealing with files may in principle be implementable, but aren’t nec-
essary in a monolithic kernel program, since information storage in memory can also be
(more efficiently) be handled directly without a file system layer.

The newlib malloc implementation is an implementation meant for userspace pro-
gramming, since it relies on an underlying operating system to provide sbrk in order to
allocate memory pages, larger memory regions. By providing a sbrk implementation, the
malloc implementation can also be used in kernel programming, though. The drawback
compared to developing a dedicated malloc implementation is an additional function
call every time, the allocated memory region grows larger than multiples of the page
size. Additionally, in a monolithic kernel, the pages are not necessary, since only one
program, the kernel, is allocating memory and there’s no need to keep track of several
programs each allocating memory by requests to a kernel, as would be in an operating
system running several userspace programs. On the other hand, the implementation can
be customized in terms of page size, thus minimizing the negative effects of it, and align-
ment of allocated memory. The former is important because of the restricted memory
size of the PPU compared to e.g. personal computers, whereas the latter is important,
because S2PP vectors have to be aligned to 16B in memory in order to be accessible
from the vector unit and it should in principle be possible to dynamically allocate vec-
tors during runtime. Thus, a sbrk implementation is provided in order to make newlibs
malloc functional for the PPU kernel. The implementation is shown in listing [5.1} Since
only one program (the kernel) is requesting memory pages, it suffices to store the current
uppermost used memory page location and eventually increase or decrease it.

caddr_t sbrk(int incr)
{
extern char heap_base;
static char* current_end;
if (current_end == NULL) {
current_end = &heap_base;
}

charx prev_end = current_end;
current_end += incr;
return (caddr-t) prev_end;

Listing 5.1: The sbrk implementation for PPU kernel software.

5.2 Target toolchain

With sbrk implemented and the other system calls provided as stubs, a working newlib
can be build to target the PPU. In order for the newlib build to know, which systemcalls
are available, a new build target has to be created. Since the PPU’s architecture is
PowerPC, the target triplet has to be powerpc*-*-OperatingSystemName. As operating
system name, oPPUlance, proposed by Dr. Eric Mueller was chosen. A new operat-

26

ing system name also needs changes in the binutils and gcc sources, since during the
newlib build, the target specific compiler, linker, etc., such as powerpc-oppulance-gcc
are expected to exist and cannot be provided, if gcc isn’t set up to be built targeting
the powerpc-oppulance target. Additionally, in contrast to a normal operating system
target, the target is to be used for kernel developement and therefore, several auto-
matic linkage objects, e.g. crtend or crtbegin, needed for hosted programs have to be
suppressed from getting linked in into kernel executables.

5.3 Libstdc++

Libstdc++ is part of the gce sources. It is set up to only compile it’s freestanding ver-
sion, which includes only the headers initializer_list, type_traits, new, limits, exception,
typeinfo and some wrappers for ¢ headers, if it is compiled to target an unknown oper-
ating system. In order to get the missing functionality, the new operating system target
has to be added to the libstdc++ sources and libstdc++ has to be told to check it’s
features against the now to be built newlib standard c library.

The presented changes generate a new toolchain targeting specifically the PPU with
a standard c library and a standard c++ library suited for kernel developement.

27

6 Discussion

In this internship, the execution of plasticity algorithms on the PPU was parameterized.
Mask abstraction and plasticity rule encapsulation as well as timed scheduling was de-
veloped. Additionally, remote debugging support of PPU programs was established and
libstdc++ support enabled.

Masking enables usage of static sized binary masks for the vector unit as well as
tag based masks. Measurements show, that masking slows down execution of the two
examined plasticity rules (constant and stdp sampling) by about 30% and, that execution
time does linearly depend on the number of vectors processed, as expected.

The implemented scheduler enables formulation of timing constraints independent of
the task to be executed and timed execution of an arbitrary number of tasks. Com-
putation time measurements show 64bit integer time type to generate about 40% to
70% slower scheduling algorithms than with a 32bit integer time type. The time type
is integrated such that the user can transparently choose between fast computation and
good time resolution with large maximal time.

Remote debugging via gdb for PPU programs enables examination and alteration of
register values during runtime at manually set breakpoints.

Libc and libstdc++ support enables meaningful usage of all their features which don’t
deal with file system access, especially e.g. std::tuple or std:: bind.

28

7 Outlook

The implemented masking deals with the explicit mask command and methods to store
mask information efficiently. Until now, only the two examined rules, constant and
stdp sampling have been implemented using the plasticity rule framework and thus
implementing more and more complex rules is necessary to verify broad useability.

The vector operations still are written either in inline assembler or using builtin oper-
ations. This restricts portability, since neither the assembler instructions nor the builtin
operations or even the vector type exist on other platforms. Portability is necessary
to test vectorized plasticity algorithms on a host computer, e.g. to ease inspection. A
solution would be to implement or port a cross platform vector instruction library E| to
the PPU, implementing the operations using intrinsics. Thereby, the execution speed
is optimized on all platforms, the vector library is developed for. There already exist
several libraries especially targeting x86 simd extensions. Adding a PPU target to such
a library would align usage in PPU programs and on host computers by providing the
fastest computation method on either platform without adjustments to the algorithm’s
code.

The scheduler is written with a custom tuple implementation and without usage of
std :: function or std::bind. Since libstdc++ support is enabled now on the PPU, this
functionality is to be included, as it further generalizes usage of the service class and
thereby of the tasks, the scheduler can handle.

The debugging communication is parallel from the PPU to the host software, i.e. the
incoming and outgoing packets are not serialized, but are large enough to hold all register
values at once. In order to minimize the additional memory overhead introduced by the
debugging software, this communication is to be serialized to omit the large buffers.
Additionally, expanding the implemented subset of supported gdb commands, especially
implementing a functional step at branch instructions, is recommended, as debugging
demands increase. For step and setting breakpoint, it is necessary to flush the instruction
cache for these addresses. At the moment this is only workaroundeable by branching to
another address mapping to the same instruction cache address and back. Therefore,
manual hardware enabled control over cache flushing would ease and robustify debugging
programs.

!Suitable candidates might be Vc (https://github.com/VcDevel/Vc) and rts :: vec (https://github.
com/ekmett/rts)), since they both should be zero overhead implementations space as well as speed
wise, already provide integration of x86 vector extensions and strictly separate targets or backends
from the interface, which enables integration of a new target without changing the interface.

29

https://github.com/VcDevel/Vc
https://github.com/ekmett/rts
https://github.com/ekmett/rts

Bibliography

1]

30

Inc. Free Software Foundation. Appendiz E GDB Remote Serial Protocol. 2018. URL:
https//sourceware.org/gdb/onlinedocs/gdb/Remote-Protocol.html| (visited
on 07/09/2018).

Simon Friedmann. “A new approach to learning in neuromorphic hardware”. PhD
thesis. Heidelberg, Univ., Diss., 2013, 2013.

Inc. Red Hat. The Red Hat newlib C Library. 2018. URL: https://sourceware.
org/newlib/ (visited on 08/06/2018).

David Stockel. “Exploring Collective Neural Dynamics under Synaptic Plasticity”.
Masterarbeit. Universitat Heidelberg, Nov. 2017.

https//sourceware.org/gdb/onlinedocs/gdb/Remote-Protocol.html
https://sourceware.org/newlib/
https://sourceware.org/newlib/

	Introduction
	Neuron and synapse layout
	PPU
	Motivation

	Masking and Plasticity Rules
	Masking
	Mask command in vector update rule
	Boolean Mask storage
	Mask structure
	Tagged Mask structure

	Plasticity Rule
	MaskWrapper class

	Performance measurements

	Scheduling
	PPU timer register
	Services
	Event sources
	Periodic timer
	Oneshot timer

	Scheduler implementation
	Queue class
	Scheduler class

	Notes on error handling
	Performance measurements

	Remote debugging
	Online PPU to host communication
	Remote target communication
	PPU-side debugging software
	Debugging workflow

	Towards a semi-hosted software environment
	Standard c library
	Target toolchain
	Libstdc++

	Discussion
	Outlook

